• Title/Summary/Keyword: 자기입자 브러쉬

Search Result 2, Processing Time 0.018 seconds

Study on Abrasive Adhesion and Polishing Effect in Wet Magnetic Abrasive Polishing (습식자기연마(WMAP)에서 입자의 구속과 가공효과에 관한 연구)

  • Son, Chul-Bae;Jin, Dong-Hyun;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.887-892
    • /
    • 2014
  • In a conventional magnetic abrasive polishing process, the polishing abrasives are mixed with ferrous particles and slight cutting oil to form a cluster of abrasives. However, when a tool rotates at a high revolution speed, most of the polishing abrasives are scattered away from it due to the increase in centrifugal force. This phenomenon directly reduces the polishing efficiency. The use of a highly viscous matter such as silicone gel instead of cutting oil for mixing is one method to solve this problem and increase abrasive adhesion. Another method to avoid high abrasive scattering is the application of wet magnetic abrasive polishing (WMAP). In WMAP, abundant mineral oil is preliminarily applied to the workpiece surface. This study experimentally evaluated the effect of WMAP on abrasive adhesion. The relationship between the amount of working abrasives and polishing conditions was characterized. Despite the lower adhesion ratio of polishing abrasives, the surface roughness was found to be significantly improved as the result of WMAP.

Deburring using Magnetic Abrasive Machining (자기연마법을 이용한 Deburring)

  • Yeo, Woo-Seok;Lee, Choong-Seok;Chae, Seung-Su;Choi, Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.13-18
    • /
    • 2006
  • The magnetic abrasive machining has been developed as a new finishing technology to obtain a fine surface of workpiece. In this paper, a static magnetic field method and a magnetic abrasive brush which has many technical advantages, are applied for the magnetic abrasive machining. In the experiment, some items such as finishing time, ratio of the magnetic abrasives to Fe-powder, motor revolutions per minute, and motor ratio revolutions per minute are tested. The results of this study have shown the fact that the burr height is mostly affected by the finishing time and the abrasive ratio. Also, it has been found that the magnetic abrasive machining is a possible new technology for the deburring.

  • PDF