• Title/Summary/Keyword: 자기유동 고무 복합재료

Search Result 1, Processing Time 0.015 seconds

Effect of Magnetic Force on Rheological and Compressive Properties of Magneto-Rheological Rubber Composites with Iron Particle and Carbon Nanotubes (자기력이 철 분말 및 탄소나노튜브 강화 자기유동 고무 복합재료의 유동 및 압축 특성에 미치는 영향)

  • Ryu, Sang Ryeoul;Lee, Dong Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • An orthotropic magneto-rheological rubber composite (MRRC) based on a general-purpose rubber can be manufactured by using an electromagnetic device during the curing processes of rubber mixtures. The magnetic transmissivity of MRRCs increases with the iron particle (IP) content, and that of aligned MRRCs with a 2-T magnetic field is 1.8 to 2 times higher as compared to that of randomly dispersed MRRCs. The effect of a 2-T magnetic field on carbon nanotube (CNT) reinforced MRRC has been identified clearly, and the magnetic transmissivity is found to be 3.7%. The compressive stress of MRRC (IP 90 + CNT 5, 2 T alignment) under a magnetic field of 0.49 T is 2.1 times higher as compared to that of the matrix. The MR effect of MRRC increases with the IP content, and that of aligned MRRC with the IP 90 and 2 T magnetic field is 20.4%. It is confirmed that the magnetic field when making the specimen and when performing the compression test greatly impacts the compression characteristics.