• Title/Summary/Keyword: 자기스펙트럼밀도함수

Search Result 12, Processing Time 0.016 seconds

Characteristics of Two-Dimensional Turbulent Wake Flow behind a Circular Cylinder (圓柱 뒤의 2 次元 後流 流動 特性)

  • 부정숙;윤순현;이종춘;강창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.555-563
    • /
    • 1985
  • Two-dimensional turbulent wake flow behind a circular cylinder is investigated experimentally by suing linearized constant temperature hot wire anemometer. Turbulent fluctuations and mean velocity defects are measured in the rage of 5 dia.- 500 dia. downstream from the cylinder and for the Reynolds numbers of 2000-4000. Results with statistical treatment and digital data processing techniques are as follows: (1) The transition region from near wake to far wake is 30 dia. - 50 dia. downstream from the cylinder. (2) In the near wake, it is found that strong periodic ( f=845Hz) coherent structure exists. (3) It shows that the inertial subrange is 180Hz-2000Hz in self preservation region.

Development of Time Lag Considered (TLC) Crowd Load Model Based on Probabilistic Approach (개인별 시간지연효과를 고려한 확률론적 군중 하중모형 개발)

  • Kim, Sung-Yong;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • To overcome the limitations of current evaluation procedures for floor vibration under crowd loading, two kinds of uncertainties associated with individual time lag differences and the complex behavior of crowd should be taken into account. The complex behavior of crowds has yet to be fully described, even though individual differences can be dealt with statistically. This paper proposes time lag considered (TLC) crowd model based on a probabilistic approach. The load reduction factor, which reflects the effect of a general degree of synchronization among crowd, is proposed. Extensive Monte Carlo simulations were carried out to determine various crowd behaviors by using the TLC crowd model proposed. The TLC crowd model can rationally treat the energy loss of various crowd patterns. This indicates that it may be used as a theoretical basis in refining dynamic load factor of crowd loading.