시계열 확산 데이터를 활용하여 Bass 확산모형을 최소자승법(OLS)으로 추정하면, 초기에는 과다 추정하고 변곡점을 지나서는 수요를 낮게 추정하는 경향이 있다. 또한 확산모형에서 필요한 변수가 모형에서 빠짐으로 인해 발생하는 설정오류는 잔차의 자기상관을 발생시킬 수 있다. 자기상관이 오차항에 있을 경우, 추정된 모형의 모수들은 불편추정치이나 비효율적 추정치가 된다. 따라서 이러한 문제를 해결하는 확산모형의 개발이 요구된다. 본 연구에서는 자기상관 오차항을 고려한 수정된 확산모형을 제안하였다. 모형의 검증을 위해 미국의 CT-스캐너와 우리나라의 FPD TV 판매량를 제안된 모형에 응용하였다. 분석결과, 제안된 모형이 기존 모형에 비해 적합도와 모형의 주요 추정 통계량에서 우수함을 보였다.
본 논문은 회귀분석에서 오차항의 1차 자기상관 존재 여부 및 그 값을 검정하는 방법을 베이지안 접근법으로 제안하였다. 이 방법은 모수공간의 다중분할로 인해 얻어진 여러 가설들에 대한 다중결정문제를 다중 베이즈요인에 관한 이론과 일반화 Savage-Dickey 밀도비를 이용한 사후확률 추정법을 합성하여 개발되었다. 이 방법은 기존의 검정법들에서 가능한 검정 뿐 아니라 이들이 해결할 수 없는 자기상관에 대한 다중결정문제에도 사용이 가능한데 그 효용성이 있다. 모의실험을 통하여 제안된 검정법의 유효성을 평가하였다.
본 논문에서는 회귀모형 오차항의 1차 자기상관에 대한 베이즈 검정법을 제안하였다. 이를 위해 자기상관검정에서 설정된 귀무 및 대립가설간에 베이즈 요인을 도출하고, 이를 근사추정하는 방법을 일반화 Savage-Dickey 밀도비와 Gibbs 추출법의 합성을 통해 제시하였다. 또한, 근사추정의 효율 및 제안된 검정법의 검정력을 평가하기 위해서 모의실험과 경험적 자료분석 예를 사용하였다.
포인트 속성의 위치 기반 소셜 네트워크 서비스(Location-Based Social Network Services, LBSNS) 데이터를 멀티스 케일의 타일맵상에 효과적으로 시각화하기 위해서는 격자 기반으로 군집화하여 표현해야 할 필요성이 있다. 이때 격자의 크기 및 개수를 결정해야 하는데, 이에 대한 기준은 정해진 것이 없으며 데이터의 종류와 분석 목적에 따라 달라지므로 연구자의 주관이 개입될 수밖에 없다. 이때 연구 결과에 영향을 끼치는 공간단위 임의성의 문제(Modifiable Areal Unit Problem, MAUP)가 발생한다. 본 연구에서는 LBSNS 중 지오태깅(geotagging)된 트위터(Twitter) 데이터를 대상으로 하여 이러한 MAUP의 영향을 스케일 효과(scale effect)의 측면에서 탐색해 보고자 하였다. 이를 위해 공간오차모델(spatial error model)을 이용하여 데이터의 공간적 자기상관성(spatial autocorrelation)의 정도를 조절하였으며, 이에 대해 격자의 크기를 달리함에 따른 공간적 자기상관성의 변화를 Moran's I를 통해 분석하였다. 실험 결과, 원 데이터에는 양의 공간적 자기상관성이 존재하는 것을 확인하였으며, 이러한 경우에는 공간오차모델의 공간자기회귀계수(spatial autoregressive coefficient)의 값이 증가할수록 공간적 자기상관성이 감소하는 것을 알 수 있었다. 이러한 특성을 이용하여 트위터 데이터의 공간적 자기상관성의 강도를 5단계로 조절하였으며, 각 단계에 대하여 격자의 크기를 9단계로 나누어 각각에서의 Moran's I를 계산하였다. 그 결과, 합역 수준이 높아질수록 공간적 자기상관성이 증가하다가 격자의 크기가 600m에서 1,000m 사이일 때 감소하는 것을 알 수 있었으며, 공간적 자기상관성이 강할수록 MAUP에서의 스케일 효과는 감소하는 경향이 있는 것을 확인하였다.
자료기반 수문예측 모형은 서로 자기상관이 다른 자료계열에 대해 예측결과만으로 모형의 성능에 대한 상대비교가 어렵다. 그러나 관측치와 예측치간의 평균 오차만을 기준으로 판단하는 기존의 모형 성능평가 기법은 대부분 이러한 자료기반 예측모형의 특성을 고려하지 못하고 있다. 따라서 본 논문에서는 자료기반 수문 예측모형의 성능을 보다 객관적으로 평가할 수 있는 새로운 모형 성능평가 기법인 상대 상관계수(Relative Correlation Coefficient; RCC) 제시하였다. RCC는 자기상관계수에 대한 관측치와 예측치간의 상관계수의 비로 산정되며, 자기상관정도에 따라 예측성능의 결과가 달라진다. 본 논문에서는 다양한 자기상관을 가지는 선형, 비선형 자료계열에 대해 자료기반 수문모형을 적용하여 기존 모형평가 기법의 한계를 제시하였다. 그리고 기존의 성능평가 기법과 RCC를 비교분석하여 자료기반 수문예측모형의 성능평가에 있어 RCC가 보다 객관적이고 일관성 있는 성능평가가 가능함을 보였다.
본 논문에서는 페이딩 채널 환경에서 훈련 신호을 이용하는 자기 상관 함수 기반의 반송파 주파수 오차 추정기를 제안한다. 제안된 주파수 동기화 기법은 기존의 자기 상관 함수 기반의 추정기와 비교하였을 때 자기 상관 함수 계산 과정에서 보다 낮은 계산 복잡도를 가진다. 실험 결과를 통하여 제안된 반송파 주파수 오차 추정기가 기존의 방식보다 향상된 성능을 가지며, 제안된 추정기의 성능이 CRLB(Cramor-Rao lower bound)에 근접함을 보인다.
일반적으로 레이더는 신호 탐지를 회피하기 위해 신호를 변조해 송신한다. 전자전에서는 수신된 레이더 펄스를 분석하여 신호를 방사한 레이더의 제원을 식별한다. 본 논문에서는 자기상관계수를 활용하여 레이더 신호 변조 형태를 식별하는 알고리즘을 제안한다. 레이더 신호의 펄스반복주기 특성에 따라 자기상관을 계산할 때 비교 범위를 다르게 적용한다. 고정 펄스반복주기와 스태거 펄스반복주기에 대하여 좁은 오차 범위를 적용하고, 지터 펄스반복주기에는 넓은 오차 범위를 적용하여 자기상관계수를 계산한다. 실험에 의하여 제안하는 알고리즘은 고정 펄스반복주기, 스태거 펄스반복주기, 지터 펄스반복주기를 정확하게 구분함과 동시에 스태거의 레벨도 정확히 찾을 수 있음을 확인하였다.
일반적으로 오차항이 자기상관되어 있는 선형회귀 모형에서는 회귀계수에 대한 보통최소제곱추정량이 효율적이지 못 하다고 알려져 있다. 그러나 이러한 일반화선형회귀모형에서 독립변수의 형태에 따라서는 OLSE의 사용 가능성을 제시하는 모형이 있다. 본 연구에서는 오차항이 일차 이동평균 과정을 따르는 선형회귀모형에서 여러 추정량들 (GLSE, APX, MAPX)에 대한 OLSE의 상대효율함수를 유도하고 비교 분석하고자 한다. 특히 소표본에서 정확한 상대효율값을 구하여 OLSE의 효율성이 크게 떨어지지 않거나 효율성이 나은 회귀모형들을 제시한다.
이 논문에서는 비선형 자기회귀 과정을 따르는 오차항을 포함한 회귀모형에서 계수추정법의 비교를 다룬다. 비교를 위해 통상적 최소제곱추정량, 일반화 최소제곱추정량, 모수적 회귀오차 수정법, 비모수적 회귀오차 추정법을 비교하였다. 본 논문에서는 또한 비선형 자기회귀모형의 성질을 전형적인 몇가지 비선형자기회귀 모형을 예를 들어 설명한다. 비교연구의 결과 네 가지 추정량 중에 모든 상황에서 최선인 추정량은 존재하지 않았으나 비모수 회귀오차 수정 방법이 일반적으로 우수한 성능을 보임을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.