• Title/Summary/Keyword: 자기변형

Search Result 465, Processing Time 0.079 seconds

Lamb wave generation and analysis in a non-ferromagnetic plate using an orientation-adjustable patch-type magnetostrictive transducer (조향 자기변형 트랜스듀서(OPMT)를 이용한 비자성체 판구조물에서 램파 발생 및 신호해석)

  • Lee, Ju-Seung;Sun, Kyung-Ho;Cho, Seung-Hyun;Hong, Jin-Chul;Kim, Yoon-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.542-545
    • /
    • 2005
  • This paper is concerned wi th the generation of the Lamb waves in a non­ferromagnetic plate by a recently-developed orientation-adjustable patch-type magnetostrictive transducer (OPMT) and the dispersion analysis from the measured Lamb waves. OPMT is capable of adjusting wave-propagation orientation only with a single installation on a plate. The mechanics behind the wave generation and measurement by the magnetostrictive phenomenon, the working principle of OPMT is explained and the actual generation and measurement of the Lamb waves were conducted in a 3 mm-thick aluminum plate. For the accurate analysis of the dispersion characteristics of the measured Lamb waves, a modified version of the short-time Fourier transform, known as the dispersion-based short-time Fourier transform, was employed. The results presented in this work would serve as the underlying research for an advanced non-destructive evaluation based on ultrasonic waves.

  • PDF

Torsional modal testing of a non-ferromagnetic shaft by magnetostrictive patch transducers (자기변형 패치 트랜스듀서를 이용한 비자성 축의 비틀림 모달 테스팅)

  • Cho, Seung-Hyun;Han, Soon-Woo;Park, Chan-Il;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1159-1164
    • /
    • 2006
  • Torsional vibration is an important vibration mode when shafts, cylinders and pipes are considered. However, the modal testing of torsional vibrations is not an easy job to carry out because of the lack of proper transducers. This work presents a new torsional vibration transducer based on the magnetostrictive principle and its application to torsional modal testing. The transducer is so designed as to generate/measure only torsional vibrations excluding other vibration modes such as longitudinal and bending vibrations. The transducer is composed of ferromagnetic patches bonded to a test structure, permanent magnets, and a solenoid. Though patches and magnets are bonded to a structure, torsional vibrations are generated and measured wirelessly by a solenoid encircling a test structure. The proposed transducer works even at considerably high frequencies, say, tens of kilohertz. Furthermore, the transducer can be manufactured at a low price. To check the performance of the proposed method, the torsional modal testing on a hollow aluminum shaft was conducted. The results, such as eigenfrequencies, obtained by the proposed transducer agreed favorably with theoretical results.

  • PDF

Torsional Modal Testing of a Non-ferromagnetic Shaft by Magnetostrictive Patch Transducers (자기변형 패치 트랜스듀서를 이용한 비자성 축의 비틀림 모달 테스팅)

  • Cho, Seung-Hyun;Han, Soon-Woo;Park, Chan-Il;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.879-885
    • /
    • 2006
  • Torsional vibration is an important vibration mode when shafts, cylinders and pipes are considered. However, the modal testing of torsional vibrations is not an easy task to carry out because of the lack of proper transducers. This work presents a new torsional vibration transducer based on the magnetostrictive principle and its application to torsional modal testing. The transducer is so designed as to generate/measure only torsional vibrations excluding other vibration modes such as longitudinal and bending vibrations. The transducer is composed of ferromagnetic patches bonded to a test structure, permanent magnets, and a solenoid. Though patches and magnets are bonded to a structure, torsional vibrations are generated and measured wirelessly by a solenoid encircling a test structure. The proposed transducer works even at considerably high frequencies, say, tens of kilohertz. Furthermore, the transducer can be manufactured at a low price. To check the performance of the proposed method, the torsional modal testing on a hollow aluminum shaft was conducted. The results, such as eigenfrequencies, obtained by the proposed transducer agreed favorably with theoretical results.