• Title/Summary/Keyword: 자기극변환

Search Result 5, Processing Time 0.02 seconds

The Rotor Position Sensing Method of BLAC Motor using a Magnetic and Digital Signal Processing Chip (자석과 디지털 신호처리 칩을 이용한 BLAC모터의 회전자 위치검출 방법)

  • Shin, Yun-Su;Oh, Tae-Seok;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.439-440
    • /
    • 2008
  • 모터의 정밀한 제어를 위해서 홀센서와 모터의 회전자 위치를 검출해내는 엔코더의 사용이 필수적이라 할 수 있다. 본 논문에서는 BLAC모터의 회전자 위치검출 방법으로 자석과 디지털 신호처리 칩을 이용하여 엔코더와 홀센선의 기능을 구현하였다. 이러한 방법의 장점은 기구적인 구조가 단순하여 저가로 구현할 수 있다는 것이다. 단순 2극 자석이 칩의 중심점을 축으로 회전하면 칩 중심 부위의 통합적 홀소자가 칩 표면 자기장을 전압으로 변환한다. 이 신호를 받아 DSP의 아날로그/디지털 변환 기능을 이용하여 절대각도 위치 정보를 검출해내어 기존의 엔코더 성능을 대치하는 연구과정을 본 논문에서 보였다.

  • PDF

A Case Study on The Data Processing and Interpretation of Aeromagnetic Survey Conducted in The Low Latitude Area: Stung Treng, Cambodia (저위도 캄보디아 스퉁트렝 지역의 항공자력탐사 자료처리 및 해석)

  • Shin, Eun-Ju;Ko, Kwang-Beom;You, Young-June;Jung, Yeon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.136-143
    • /
    • 2012
  • In this case study, we present the various and consistent processing techniques for the reasonable interpretation of aeromagnetic data. In the processing stage, we especially focused on the three major respects. First, in the low latitude area, severe artifacts are occurred as a result of reduction to the pole technique. To overcome this problem, variable alternative methods were investigated. From the comparison of each technique, we concluded that energy balancing method gives more fruitful result. Second, because of limited a priori information, it is nearly impossible to employ detailed geological survey due to wide and thick spreading of soils in the survey area. So we especially investigated the new techniques such as extracting slope, curvature and aspect information mainly used in GIS field as well as conventional methods. Finally, by using the Euler deconvolution, we extracted the depth information on the magnetic anomalous body. From the synthetic analysis between depth information and previous discussed results, the detailed future survey area was proposed. We think that a series of processing techniques discussed in this study may perform an important role in the domestic and abroad resource development project as a useful guideline.

Deformation Invariant Optical Correlator Using Photorefractive Medium (광굴절 매질을 이용한 공간계 불변 광상관기에 관한 연구)

  • Kim, Ran-Sook;Ihm, Jong-Tae;Son, Hyon;Park, Han-Kyu
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.97-101
    • /
    • 1989
  • Scale and rotation invariant polar-logarithmic coordinate transformation is used to achieve deformation invariant pattern recognition. The coordinate transformation is produce by a computer generated hologram (CGH). The mask fabricated by a photo (UV light) pattern generator for the 1nr-$theta$ coordinate transformation is made of the CGH whose transmission function is derived by the use of Lee's method. The optically produced coordinate transformed function is derived by the use of Lee's method. The optically produced coordinate transmission input pattern is interfaced on real-time holography. Variations of autocorrelation for scaled and rotated input patterns are suggested experimentally using implemented optical correlator.

  • PDF

Experimental Study on the Natural Convective Heat Transfer Characteristics of Ferrofluid for Concentric Annuli under Rotating Magnetic Field (회전수 및 자기장강도 변화에 따른 이중원관내 자성유체의 자연대류 열전달 특성에 관한 실험적 연구)

  • Kim, Hyung-Jin;Seo, Jae-Hyeong;Kim, Dae-Wan;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.77-81
    • /
    • 2013
  • The objective of this study is experimentally to investigate natural convective heat transfer characteristics of the ferrofluid for a concentric annuli under rotating magnetic field with variations of the revolution and the magnetic field strength. The rotating magnetic field was provided by induction motor with 6 poles and 3 phases and the revolution and the magnetic field strength were controlled by an inverter driver and a voltage meter, respectively. Temperatures of the inner pipe and the outer pipe in the tested concentric annuli were maintained at $30^{\circ}C$ and $25^{\circ}C$, respectively, during the test and the direction of the rotating magnetic field was a counterclockwise. As a result, the natural convective heat transfer characteristics of the ferrofluid for a concentric annuli were increased with the rise of the revolution and magnetic field strength due to the increased heat dissipation between hot side and cold side of the concentric annuli.

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.