• Title/Summary/Keyword: 자계중 열처리

Search Result 3, Processing Time 0.02 seconds

Large Barkhausen Effects by Annealing of CoFeSiB Amorphous Ribbon (CoFeSiB 아몰퍼스리본의 열처리에 의한 대바크하우젠 효과)

  • 임재근;강재덕;정병두;신용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.59-72
    • /
    • 1999
  • In this thesis, we measured the Barkhausen effect of CoFeSiB amorphous ribbon and then investigated its possibility to be used as a sensor material. We used a sample of composition $($Fe_{0.06}$$Co_{0.94}$)_${0.79}$$Si_{2.1}$$B_{18.9}$ with a thickness 12[pm1, width 2.5[rnml and length 5[cm], which was fabricated by a single roll method. In order to improve magnetic characteristics of the sample, we had carried on annealing in the magnetic field and in none magnetic field. And, experimented results to the magnetic characteristics show that the ribbon has large Barkhausen jump even in weak magnetic field below 0.5[0el. From the results, we confirmed that the sample can be used as an magnetic sensor material.

  • PDF

Magnetic Properties of FeCoSiB Amorphous Films Annealed in Magnetic field (자계중 열처리된 FeCoSiB 아몰퍼스박막의 자기적 특성)

  • 신광호;김영학;사공건
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1305-1309
    • /
    • 2003
  • To utilize FeCoSiB amorphous films for magnetoelastic sensors, the temperature dependency of magnetization (M-T curve) and the magnetization properties of the amorphous films were investigated in this study. As the amount of cobalt In the films increased, the Curie temperature decreased but the crystallization temperature increased. In addition to this, the crystallization temperature was lower than the Curie temperature in the film containing 20 at% cobalt. The optimized annealing condition was set up by analyzing the H-T curve. And then, the amorphous film that has excellent magnetic properties and uni-axal anisotropy could be prepared for construction of the magnetoelastic sensor devices. The coercive force of the film was below 0.5 Oe and the anisotripic field was about 5 Oe.

Magneto-Impedance Effect of FeCoSiB Amorphous Magnetic Films (FeCoSiB계 아몰퍼스 자성박막의 자기-임피 던스 효과)

  • Shin, Yong-Jin;Soh, Dae-Hwa;Kim, Hyen-Wook;Kim, Dae-Ju;Seo, Kang-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.252-255
    • /
    • 1998
  • In this paper, we investigate the magneto-impedance(M1) effect of the FeCoSiB amorphous magnktic films. The amorphous magnetic film having near zero magnetostriction is fabricated by using the sputtering method, and then annealed in magnetic field. When the external magnetic field is directly applied to the fabricated film, the voltage amplitude between both side of the magnetic film varies about 76.2% at 120[MHzl and the impedance varies about 2.1%/0e. Thus, we find that the fabricated magnetic film has the characteristics of good sensor element.

  • PDF