Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.226-230
/
2001
오류 역전파 알고리즘을 영상 인식에 적용한 경우 은닉층의 노드 수를 경험적으로 설정하여야 하는 문제점이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘의 은닉층 노드 수를 동적으로 설정하는 문제를 해결하기 위해 ART1을 수정하여 지도 학습 방법과 결합한 자가 생성 지도 학습 알고리즘을 제안하였다. 제안된 학습 알고리즘의 성능을 평가하기 위해 콘테이너 영상의 문자 및 숫자 인식 문제에 적용하여 기존의 오류 역전파 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 자가 생성 지도 학습알고리즘이 기존의 오류 역전과 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 영상 인식에 적용할 수 있는 가능성도 제시하였다.
Computer based teaming system has considerable influence upon teaching technique and teaming efficiency. It is possible to make a learner-oriented teaching in the online learning system. In this case, it can provide easily and immediately learner with various information that relate to class status, for example, attendance, examination score and so on. In the case of conventional off-line education, however, it is inefficient to provide the information of class status for learners compared with on-line system. In this paper, we propose a monitoring system of class status which can provide various information of teaming status for learners, instructors and advisors. It is useful to advise student's course work and job. The main purpose of this system is to prepare a monitoring system of class status on a web based e-class system. It achieves self-monitoring systems which provide a feedback data as a result of class for students.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.2
/
pp.393-398
/
2005
본 논문에서는 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특징이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외한 모든 부분을 잡음으로 처리하기 위해 퍼지를 이용한 잡은 판단 방법을 적용하여 식별자 영역과 잡음을 구별한다. 식별자 영역을 제외한 잡음 영역을 전체 영상의 평균 픽셀값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 8방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 ART2 기반 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이에 ART2를 적용하여 은닉층의 노드를 생성하고, 은닉층과 출력층 사이에 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었다. 그리고 기존의 식별자 인식 알고리즘보다 제안된 ART2 기반 자가 생성 지도 학습 알고리즘이 식별자의 학습 및 인식에 있어서 우수한 성능이 있음을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.227-230
/
2022
본 연구에서는 실질적 학습자가 교수자로 착각을 한 상태에서 아바타를 학습시키는 과정을 통해 학습이 되게 하는 구조를 설계하고 제안하였다. 시스템 관리자와 교육자료 형성자를 제외하면, 교수자로 착각하고 있는 '학습자'와 학습자의 공부를 위해 노력하는 학습 가이드 역할을 '학습 관찰자', 학습이 되는 아바타로 구성된다. '학습 관찰자'는 학습 방향을 제시하여 아바타가 활동하는 방향을 지시하게 되며, 아바타는 지시된 방향에서 1:1 학습과 같은 형태로 교수자 입장 학습자에게 공부도움을 요청하게 된다. 아바타의 학습은 인공지능 지도 학습 방법을 이용하여 학습되도록 하며, 교수자로 착각하는 학습자는 아바타 학습 시 아바타에 의해 슬며시 제공되는 학습 자료를 참고하며 아바타를 공부시키게 되는 데 아바타를 공부시킨다고 노력하는 과정이 교수자로 착각된 학습자가 공부가 되는 것이다. 또한 이렇게 학습하는 과정을 거쳐 지식이 성장한 아바타는 아바타들이 경쟁하는 경진 대회에 참가하게 되며 교육자로 착각하는 학습자는 관전 또는 코치를 하며 학습을 하게 된다. 이러한 방법을 통해 교육자로 착각하는 학습자는 부모의 마음으로 적극적으로 공부를 하게 유도하며, 흥미를 갖고 공부를 하게 할 뿐 아니라, 가르치는 사람에 준하는 깊이 있는 지식을 갖도록 유도하며, 본 시스템과 온라인 오프라인을 통해 연결 되게 한 운동 기구 및 운동 환경을 이용하여 운동 하도록 유도하고 파워가 되도록 하여 운동 활동을 유도하며, 단계 마다 적당한 보상 점수들이 제공되도록 하여 지덕체가 성장되도록 하는 설계이다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.11a
/
pp.500-506
/
2005
본 논문에서는 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특정이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외하고는 모든 부분을 잡음으로 처리하기 위해 퍼지 추론 방법을 이용하여 식별자 영역과 바탕영역을 구별한다. 식별자 영역으로 구분 된 영역은 그대로 두고, 바탕 영역으로 구분된 영역 은 전체 영상의 평균 픽셀 값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출 하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화 된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출 한다. 개별 식별자 인식을 위해 자가 생성 지도 학습 알고리즘을 제안하여 개별 식별자 인식에 적용한다. 제안된 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이의 구조를 ART-l을 개선하여 적용하고 은닉층과 출력층 사이에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 및 인식 성능을 개선한다. 실제 80 개의 컨테이너 영상을 대상으로 실험한 결과, 제안된 식별자 추출 방법이 이전의 개별 추출 방법보다 추출률이 개선되었고 FCM 기반 자가 생성 지도 학습 알고리즘보다 제안된 자가 생성 지도 학습 알고리즘이 컨테이너 식별자의 학습 및 인식에 있어서 개선된 것을 확인하였다.색 문제를 해결하고자 하는 것이 연구의 목적이다. 정보추출은 사용자의 관심사에 적합한 문서들로부터 어떤 구체적인 사실이나 관계를 정확히 추출하는 작업을 가리킨다.앞으로 e-메일, 매신저, 전자결재, 지식관리시스템, 인터넷 방송 시스템의 기반 구조 역할을 할 수 있다. 현재 오픈웨어에 적용하기 위한 P2P 기반의 지능형 BPM(Business Process Management)에 관한 연구와 X인터넷 기술을 이용한 RIA (Rich Internet Application) 기반 웹인터페이스 연구를 진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료
Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.1437-1440
/
2011
현재 학교수업에서 학습자간 학습 능력의 차이를 해결하기위해 개별 학습과 수준별 학습을 이용한다. 그러나 수업시간 중에 수준별, 개별학습을 진행하기에는 어려움이 따른다. 이에 해결방법으로 동료 지도학습 방법, 웹기반 개별지도 학습방법 등이 적용되고 있으나 이 또한 동료끼리의 열등감 문제, 즉각적 피드백 부족 등으로 많은 문제점들이 발생하고 있다. 따라서 본 연구에서는 효율적인 동료지도학습 방법을 적용하는 방법으로 SNS를 기반으로한 학습지원시스템을 제안한다. 본 시스템을 적용함으로써 기존의 동료지도학습 방법에서의 시.공간적인 제약 문제를 해결하였고, 개별학습과 수준별 학습이 가능하며, 자기주도적 학습이 효과적으로 이루어질 수 있다. 또한, 누구나 학습자와 교수자의 입장이 될 수 있으므로 동료끼리의 열등감 문제를 해결할 수 있다. 교수자로서의 역할 경험은 자아성취감을 고취시켜 학습의 흥미도를 높일 수 있다.
The Journal of Korean Association of Computer Education
/
v.15
no.6
/
pp.33-41
/
2012
This paper presents the online assessment questions management system and method. The proposed system consists of a database to store learner information and zone-specific items grouped by difficulty and item bank. This database includes: an item selection department and authoring assessment to select questions about a particular learner or specific learning item. In this paper, we propose: an item bank database which stores online output assessments; and an online test department to collect and sort learner evaluation data and answer selection order for online tests, click statistics, response time, and analysis unit response patterns department by analyzing the data collected by the online learners' test assessment, learners' level and ability, the diagnosis and assessment of report propensity. The proposed system will diagnose and effectively evaluate the learner's learning levels and learning ability by: answer selection order, number of clicks, and response time reflected in the results of the learners' evaluations.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.693-695
/
2000
WBI는 시간과 공간의 제약 없이 다양한 교수 전략의 구사와 실감나는 교육매체의 활용을 가능하게 하여, 교사-학습자 또는 학습자-학습자 상호간의 교육 교육효과를 증진시킬 수 있는 환경을 제공한다. 그러나 WBI는 하이퍼텍스트의 링크로 연결된 일차원적 가상공간에 실시되므로 학습자의 인지적 부하를 가중시키고 학습방향 상실의 문제점을 야기시킨다. 따라서 본 논문에서는 이러한 문제점들을 해결하기 위하여 동적 학습공간 모델을 제시하고 이를 구현하였다. 동적 학습공간 모델은 전체 학습공간이 투명하게 지도(Hpyper-Map)형태로 나타나고 공간 노드간의 관계가 명확하여, 학습 위치와 내용을 확실하게 파악할 수 있다. 또한 학습공간이 학습자에 의해 자발적으로 구성됨에 따라, 학습자 수준별 열린 학습이 가능하고, 학습 구성 능력을 신장시켜 학습의 주도권을 주체적으로 행사할 수 있도록 하는 창조적 학습 분위기를 조성할 수 있다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.682-684
/
1999
본 논문에서는 지능형 교습시스템에서 필요한 교수 모듈을 분석하고 이에 근거하여 새로운 교습모듈을 제시하고 구현하였다. 학습자의 학습능력을 평가하고 이에 따른 교습 전략을 세우고 교습방법을 설정하기 위하여 학습자의 성향을 정확히 파악하여야 한다. 따라서 본 논문에서는 구축된 지식베이스와 학습자 성향을 파악하는 history database를 근거하여 개념 지도(concept map)을 이용하여 학습자 성향과 학습자의 지식 정도를 정확히 파악하여 교습모듈을 제시.구현하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.7
/
pp.1380-1386
/
2007
This paper proposed an automatic recognition system of shipping container identifiers using fuzzy-based noise removal method and ART2-based self-organizing supervised learning algorithm. Generally, identifiers of a shipping container have a feature that the color of characters is blacker white. Considering such a feature, in a container image, all areas excepting areas with black or white colors are regarded as noises, and areas of identifiers and noises are discriminated by using a fuzzy-based noise detection method. Areas of identifiers are extracted by applying the edge detection by Sobel masking operation and the vertical and horizontal block extraction in turn to the noise-removed image. Extracted areas are binarized by using the iteration binarization algorithm, and individual identifiers are extracted by applying 8-directional contour tacking method. This paper proposed an ART2-based self-organizing supervised learning algorithm for the identifier recognition, which improves the performance of learning by applying generalized delta learning and Delta-bar-Delta algorithm. Experiments using real images of shipping containers showed that the proposed identifier extraction method and the ART2-based self-organizing supervised learning algorithm are more improved compared with the methods previously proposed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.