• 제목/요약/키워드: 자가-지도 학습

Search Result 3,312, Processing Time 0.029 seconds

The Proposed Self-Generation Supervised Learning Algorithm for Image Recognition (영상 인식을 위한 제안된 자가 생성 지도 학습 알고리즘)

  • 이혜현;류재욱;조아현;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.226-230
    • /
    • 2001
  • 오류 역전파 알고리즘을 영상 인식에 적용한 경우 은닉층의 노드 수를 경험적으로 설정하여야 하는 문제점이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘의 은닉층 노드 수를 동적으로 설정하는 문제를 해결하기 위해 ART1을 수정하여 지도 학습 방법과 결합한 자가 생성 지도 학습 알고리즘을 제안하였다. 제안된 학습 알고리즘의 성능을 평가하기 위해 콘테이너 영상의 문자 및 숫자 인식 문제에 적용하여 기존의 오류 역전파 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 자가 생성 지도 학습알고리즘이 기존의 오류 역전과 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 영상 인식에 적용할 수 있는 가능성도 제시하였다.

  • PDF

A Web-based Monitoring System of Class Status (웹기반 학업상태모니터링시스템의 구현)

  • Hur Tae-Won
    • Journal of Engineering Education Research
    • /
    • v.8 no.4
    • /
    • pp.5-19
    • /
    • 2005
  • Computer based teaming system has considerable influence upon teaching technique and teaming efficiency. It is possible to make a learner-oriented teaching in the online learning system. In this case, it can provide easily and immediately learner with various information that relate to class status, for example, attendance, examination score and so on. In the case of conventional off-line education, however, it is inefficient to provide the information of class status for learners compared with on-line system. In this paper, we propose a monitoring system of class status which can provide various information of teaming status for learners, instructors and advisors. It is useful to advise student's course work and job. The main purpose of this system is to prepare a monitoring system of class status on a web based e-class system. It achieves self-monitoring systems which provide a feedback data as a result of class for students.

Container Image Recognition using ART2-based Self-Organizing Supervised Learning Algorithm (ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템)

  • Jung, Byung-Hee;Kim, Jae-Yong;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.393-398
    • /
    • 2005
  • 본 논문에서는 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특징이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외한 모든 부분을 잡음으로 처리하기 위해 퍼지를 이용한 잡은 판단 방법을 적용하여 식별자 영역과 잡음을 구별한다. 식별자 영역을 제외한 잡음 영역을 전체 영상의 평균 픽셀값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 8방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 ART2 기반 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이에 ART2를 적용하여 은닉층의 노드를 생성하고, 은닉층과 출력층 사이에 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었다. 그리고 기존의 식별자 인식 알고리즘보다 제안된 ART2 기반 자가 생성 지도 학습 알고리즘이 식별자의 학습 및 인식에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

Design of Teaching and Learning Model through Avatar Training (아바타 교육을 통한 교수 학습 모델의 설계)

  • Lee, Kyong-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.227-230
    • /
    • 2022
  • 본 연구에서는 실질적 학습자가 교수자로 착각을 한 상태에서 아바타를 학습시키는 과정을 통해 학습이 되게 하는 구조를 설계하고 제안하였다. 시스템 관리자와 교육자료 형성자를 제외하면, 교수자로 착각하고 있는 '학습자'와 학습자의 공부를 위해 노력하는 학습 가이드 역할을 '학습 관찰자', 학습이 되는 아바타로 구성된다. '학습 관찰자'는 학습 방향을 제시하여 아바타가 활동하는 방향을 지시하게 되며, 아바타는 지시된 방향에서 1:1 학습과 같은 형태로 교수자 입장 학습자에게 공부도움을 요청하게 된다. 아바타의 학습은 인공지능 지도 학습 방법을 이용하여 학습되도록 하며, 교수자로 착각하는 학습자는 아바타 학습 시 아바타에 의해 슬며시 제공되는 학습 자료를 참고하며 아바타를 공부시키게 되는 데 아바타를 공부시킨다고 노력하는 과정이 교수자로 착각된 학습자가 공부가 되는 것이다. 또한 이렇게 학습하는 과정을 거쳐 지식이 성장한 아바타는 아바타들이 경쟁하는 경진 대회에 참가하게 되며 교육자로 착각하는 학습자는 관전 또는 코치를 하며 학습을 하게 된다. 이러한 방법을 통해 교육자로 착각하는 학습자는 부모의 마음으로 적극적으로 공부를 하게 유도하며, 흥미를 갖고 공부를 하게 할 뿐 아니라, 가르치는 사람에 준하는 깊이 있는 지식을 갖도록 유도하며, 본 시스템과 온라인 오프라인을 통해 연결 되게 한 운동 기구 및 운동 환경을 이용하여 운동 하도록 유도하고 파워가 되도록 하여 운동 활동을 유도하며, 단계 마다 적당한 보상 점수들이 제공되도록 하여 지덕체가 성장되도록 하는 설계이다.

  • PDF

자가 생성 지도 학습 알고리즘을 이용한 컨테이너 식별자 인식

  • Kim, Jae-Yong;Park, Chung-Sik;Kim, Gwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.500-506
    • /
    • 2005
  • 본 논문에서는 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특정이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외하고는 모든 부분을 잡음으로 처리하기 위해 퍼지 추론 방법을 이용하여 식별자 영역과 바탕영역을 구별한다. 식별자 영역으로 구분 된 영역은 그대로 두고, 바탕 영역으로 구분된 영역 은 전체 영상의 평균 픽셀 값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출 하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화 된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출 한다. 개별 식별자 인식을 위해 자가 생성 지도 학습 알고리즘을 제안하여 개별 식별자 인식에 적용한다. 제안된 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이의 구조를 ART-l을 개선하여 적용하고 은닉층과 출력층 사이에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 및 인식 성능을 개선한다. 실제 80 개의 컨테이너 영상을 대상으로 실험한 결과, 제안된 식별자 추출 방법이 이전의 개별 추출 방법보다 추출률이 개선되었고 FCM 기반 자가 생성 지도 학습 알고리즘보다 제안된 자가 생성 지도 학습 알고리즘이 컨테이너 식별자의 학습 및 인식에 있어서 개선된 것을 확인하였다.색 문제를 해결하고자 하는 것이 연구의 목적이다. 정보추출은 사용자의 관심사에 적합한 문서들로부터 어떤 구체적인 사실이나 관계를 정확히 추출하는 작업을 가리킨다.앞으로 e-메일, 매신저, 전자결재, 지식관리시스템, 인터넷 방송 시스템의 기반 구조 역할을 할 수 있다. 현재 오픈웨어에 적용하기 위한 P2P 기반의 지능형 BPM(Business Process Management)에 관한 연구와 X인터넷 기술을 이용한 RIA (Rich Internet Application) 기반 웹인터페이스 연구를 진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료

  • PDF

A Study on a SNS_based Learning Support System for Efficient Peer Tutoring (효율적인 동료지도학습을 위한 SNS 기반 학습지원시스템)

  • Lee, Myung-Suk;Son, Yoo-Ek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1437-1440
    • /
    • 2011
  • 현재 학교수업에서 학습자간 학습 능력의 차이를 해결하기위해 개별 학습과 수준별 학습을 이용한다. 그러나 수업시간 중에 수준별, 개별학습을 진행하기에는 어려움이 따른다. 이에 해결방법으로 동료 지도학습 방법, 웹기반 개별지도 학습방법 등이 적용되고 있으나 이 또한 동료끼리의 열등감 문제, 즉각적 피드백 부족 등으로 많은 문제점들이 발생하고 있다. 따라서 본 연구에서는 효율적인 동료지도학습 방법을 적용하는 방법으로 SNS를 기반으로한 학습지원시스템을 제안한다. 본 시스템을 적용함으로써 기존의 동료지도학습 방법에서의 시.공간적인 제약 문제를 해결하였고, 개별학습과 수준별 학습이 가능하며, 자기주도적 학습이 효과적으로 이루어질 수 있다. 또한, 누구나 학습자와 교수자의 입장이 될 수 있으므로 동료끼리의 열등감 문제를 해결할 수 있다. 교수자로서의 역할 경험은 자아성취감을 고취시켜 학습의 흥미도를 높일 수 있다.

Design of Online Assessment Item Management System (온라인 평가 문항 관리 시스템의 설계)

  • Lee, Youngseok;Cho, Jungwon
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.6
    • /
    • pp.33-41
    • /
    • 2012
  • This paper presents the online assessment questions management system and method. The proposed system consists of a database to store learner information and zone-specific items grouped by difficulty and item bank. This database includes: an item selection department and authoring assessment to select questions about a particular learner or specific learning item. In this paper, we propose: an item bank database which stores online output assessments; and an online test department to collect and sort learner evaluation data and answer selection order for online tests, click statistics, response time, and analysis unit response patterns department by analyzing the data collected by the online learners' test assessment, learners' level and ability, the diagnosis and assessment of report propensity. The proposed system will diagnose and effectively evaluate the learner's learning levels and learning ability by: answer selection order, number of clicks, and response time reflected in the results of the learners' evaluations.

  • PDF

A Model of Dynamic Learning Space for WBI (WBI를 위한 동적 학습공간 모델)

  • 박문환;남지은;홍현술;한성국
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.693-695
    • /
    • 2000
  • WBI는 시간과 공간의 제약 없이 다양한 교수 전략의 구사와 실감나는 교육매체의 활용을 가능하게 하여, 교사-학습자 또는 학습자-학습자 상호간의 교육 교육효과를 증진시킬 수 있는 환경을 제공한다. 그러나 WBI는 하이퍼텍스트의 링크로 연결된 일차원적 가상공간에 실시되므로 학습자의 인지적 부하를 가중시키고 학습방향 상실의 문제점을 야기시킨다. 따라서 본 논문에서는 이러한 문제점들을 해결하기 위하여 동적 학습공간 모델을 제시하고 이를 구현하였다. 동적 학습공간 모델은 전체 학습공간이 투명하게 지도(Hpyper-Map)형태로 나타나고 공간 노드간의 관계가 명확하여, 학습 위치와 내용을 확실하게 파악할 수 있다. 또한 학습공간이 학습자에 의해 자발적으로 구성됨에 따라, 학습자 수준별 열린 학습이 가능하고, 학습 구성 능력을 신장시켜 학습의 주도권을 주체적으로 행사할 수 있도록 하는 창조적 학습 분위기를 조성할 수 있다.

  • PDF

Adaptive Tutoring Module for Intelligent Tutoring Systems (지능형 교육시스템을 위한 적응적 교습모듈)

  • 이성곤;유영동
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.682-684
    • /
    • 1999
  • 본 논문에서는 지능형 교습시스템에서 필요한 교수 모듈을 분석하고 이에 근거하여 새로운 교습모듈을 제시하고 구현하였다. 학습자의 학습능력을 평가하고 이에 따른 교습 전략을 세우고 교습방법을 설정하기 위하여 학습자의 성향을 정확히 파악하여야 한다. 따라서 본 논문에서는 구축된 지식베이스와 학습자 성향을 파악하는 history database를 근거하여 개념 지도(concept map)을 이용하여 학습자 성향과 학습자의 지식 정도를 정확히 파악하여 교습모듈을 제시.구현하였다.

  • PDF

Container Image Recognition using Fuzzy-based Noise Removal Method and ART2-based Self-Organizing Supervised Learning Algorithm (퍼지 기반 잡음 제거 방법과 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템)

  • Kim, Kwang-Baek;Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1380-1386
    • /
    • 2007
  • This paper proposed an automatic recognition system of shipping container identifiers using fuzzy-based noise removal method and ART2-based self-organizing supervised learning algorithm. Generally, identifiers of a shipping container have a feature that the color of characters is blacker white. Considering such a feature, in a container image, all areas excepting areas with black or white colors are regarded as noises, and areas of identifiers and noises are discriminated by using a fuzzy-based noise detection method. Areas of identifiers are extracted by applying the edge detection by Sobel masking operation and the vertical and horizontal block extraction in turn to the noise-removed image. Extracted areas are binarized by using the iteration binarization algorithm, and individual identifiers are extracted by applying 8-directional contour tacking method. This paper proposed an ART2-based self-organizing supervised learning algorithm for the identifier recognition, which improves the performance of learning by applying generalized delta learning and Delta-bar-Delta algorithm. Experiments using real images of shipping containers showed that the proposed identifier extraction method and the ART2-based self-organizing supervised learning algorithm are more improved compared with the methods previously proposed.