• Title/Summary/Keyword: 잉여슬러지

Search Result 46, Processing Time 0.032 seconds

Effect of Microbubble Ozonation Process on Performance of Biological Reactor System for Excess Sludge Solubilisation (마이크로버블오존을 이용한 잉여슬러지 가용화 처리가 생물반응조의 성능에 미치는 영향)

  • Lee, Shun-Hwa;Jung, Kye-Ju;Kwon, Jin-Ha;Lee, Se-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • The study purpose was to examine an effect of zero emission of excess sludge on biological reactor and treated water quality within the biological reactor in the process of biological treatment combined with excess sludge reduction system with ozone. Under an ozone injection rate 0.03 g $O_3/g$ SS, Sludge Disintegration Number (SDN) 3 and less than pH 4 as pre-treatment process, it was possible to maintain a stable biological treatment process without sludge disintegration. In the test of $OUR_{max}$, of sludge, its value was hardly under the condition of ozone injection rate 0.03 g $O_3/g$ SS. There were almost no changes of MLVSS/MLSS within biological reactor followed by a solubilization of excess sludge. Accumulation of microorganism within biological reactor was also not observed. After solubilization of excess sludge, an increase for organic matter and SS concentrations of an effluent was not observed and T-N concentration was reduced by increasing nitrification and denitrification rate within biological reactor. Most of T-P was not removed by zero emission of excess sludge and was leaked by being included in effluents.

The Effect of Solubilization Pretreatment Process on Anaerobic Digestion of Waste Activated Sludge (전처리 가용화 공정이 잉여슬러지 혐기성 소화효율에 미치는 영향)

  • Yoo, Ho-Sik;Ahn, Seyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.35-43
    • /
    • 2016
  • COD properties of waste activated sludge (WAS) were investigated for various solubilization rate of mechanical pretreatment method in anaerobic digestion process. Inert COD was 37.0% of total COD in untreated WAS. Particulate biodegradable COD was converted to soluble biodegradables and particulate unbiodegradables as solubilization was processed. Particulate unbiodegradable portion of COD in WAS can be increased as particulate biodegradable portion is decreased in case of relatively long SRT of biological treatment. Thus, COD properties of WAS should be investigated in case of relatively low particulate biodegradable COD, because of possible low effect of solubilization. COD removal rate in anaerobic digester was enhanced as much as 2.1% and 15.1% for solubilization rate 5% and 35% due to pretreatment, respectively. COD removal rate was increased from 25% to 40%, and methane gas generation was increased from $607m^3/d$ to $907m^3/d$ as particulate COD of WAS was solubilized to 35% in pretreatment facilities.

Effects of the Co-treatment of Municipal Wastewater with Microwave-Irradiated Excess Sludge on the Performance of the Activated Sludge Process (초단파조사 처리된 잉여슬러지와 하수의 병합처리가 활성슬러지공법의 성능에 미치는 영향)

  • Kim, Nam-Chul;Jang, Myung-Bae;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.304-310
    • /
    • 2007
  • The purpose of this research was to investigate the effects of the co-treatment of municipal wastewater with microwave-irradiated excess sludge on the treatment efficiency and excess sludge production of the activated sludge process. When 250 mL of excess sludge with a MLSS concentration of approximately 2,000 mg/L was microwave-irradiated at $20^{\circ}C$ for $40\sim300$ sec by a microwave oven (2,450 MHz, 700 W), the temperature of the sludge increased at a rate of approximately $20^{\circ}C/min$ and the SCOD, TKN and T-P concentrations of the sludge showed the highest increase in the irradiation time of $40\sim130$ sec. And, the oxygen uptake rate measurement of the sludge microorganism suggested most of the microorganisms in the sludge were destroyed at an irradiation time above 130 sec(above $65^{\circ}C$). When the municipal wastewater and microwave-irradiated excess sludge was co-treated by the activated sludge process, almost no effect was observed in the pH and alkalinity of both the influent and effluent, but the influent concentrations of SS, COD, T-N and T-P increased. Even though the effluent SS, BOD and T-P concentrations showed almost no effect, the COD and TKN concentrations increased. The microbial yield coefficient decreased at a rate of 0.91 g SS/g COD removed as the irradiation ratio increased at a rate of 1 g SS/g SS-day.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

Sewage Sludge Treatment with Internal Recirculation and Diverse Pre-treatment Methods Using Combined Digestion Process (혼합 소화공정에서 내부반송과 다양한 전처리를 통한 하수 슬러지 처리)

  • Ha, Jeong Hyub;Choi, Suk Soon;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.613-619
    • /
    • 2018
  • In this study, various influent sludge pre-treatment methods and the internal recirculation of thickened sludge from effluents using a liquid/solid separation unit were adopted to investigate their effects on the sludge digestion and methane production in a combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale combined sludge digestion process was operated during 5 phases using different feed sludge pre-treatment strategies. In phase 1, the feed sludge was pre-treated with a thermal-alkaline method. In contrast, in phases 2, 3 and 4, the internal recirculation of thickened sludge from the effluent and thermal-alkaline, thermal, and alkaline pre-treatment (7 days) were applied to the combined process. In phase 5, the raw sludge without any pre-treatment was used to the combined process. With the feed sludge pre-treatment and internal recirculation, the experimental results indicated that the volatile suspended solid (VSS) removal was drastically increased from phases 1 to 4. Also, the methane production rate with the thermal-alkaline pre-treatment and internal recirculation was significantly improved, showing an increment to 285 mL/L/day in phase 2. Meanwhile, the VSS removal and methane production in phase 5 were greatly decreased when the raw sludge without any pre-treatment was applied to the combined process. Considering all together, it was concluded that the combined process with the thickened sludge recirculation and thermal-alkaline pre-treatment can be successfully employed for the highly efficient sewage sludge reduction and methane gas production.

Disintegration of Waste Activated Sludge by Acid Hydrolysis (산 가수분해에 의한 폐활성슬러지 분해)

  • Patchareeya Jaipakdee;Yeonghee Ahn
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.82-90
    • /
    • 2023
  • Biological process is used worldwide to treat domestic and industrial wastewater. The process generally uses a mixed microbial culture of sludge. The growth of microorganisms in the sludge produces excess sludge from the wastewater treatment process. Some of the excess sludge is recycled as inoculum for wastewater treatment, but the rest is removed as waste from the process. As wastewater production is increasing worldwide every year, the number of wastewater treatment plants (WWTPs) is also in- creasing, resulting in the generation of large amount of waste sludge. The increasing amount of waste sludge from WWTPs has led to concerns about its management. Sludge disposal has been reported to account for 50~60% of the total operating costs of a WWTP. Sludge disintegration is a new technology that can minimize volume of waste sludge and recover useful components (e.g., P, N, and soluble organic compounds) from it. Various methods of sludge disintegration have been developed based on physical, chemical, and biological treatments or combinations of these. In this review, we focus on sludge disintegration by acid hydrolysis, which is less studied among sludge disintegration methods. Such information can be useful in the development and implementation of a new technology for better sludge treatment.

A Study on the Disintegration of Sewage Sludge using Batch Ultrasonic Pretreatment (회분식 초음파 전처리를 이용한 하수슬러지의 분해에 관한 연구)

  • Ko, Hyun-Woong;Jung, Byung-Gil;Jung, Yon-Hwa;Kim, Hyeung-Seok;Jang, Seong-Ho;Sung, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.4
    • /
    • pp.121-129
    • /
    • 2004
  • Anaerobic digestion is the most common process for sewage sludge stabilization and has benefits of VS reduction and biogas production. Many pretreatment methods have been studied to improve hydrolysis rate because the rate of sewage sludge degradation is slow in anaerobic digestion. This study mainly focused upon the effects on disintegration of sewage sludge by ultrasonic pretreatment according to the variation of acoustic density and duration of sonication time. In this study, acoustic density has been changed as follows : 33W/L, 70W/L, 88W/L, 139W/L in case of 40 kHz with the test time changes of 10min, 20min, 25min, 30min and 40min. In the comparison of $SCOD_{Cr}/TCOD_{Cr}$ variation for excess sludge and mixed sludge disintegration, the rates of $SCOD_{Cr}/TCOD_{Cr}$ have been increased in the condition of denser acoustic density and longer sonication time with acoustic frequency of 40kHz. The pH of the excess sewage sludge and mixed sewage sludge has been decreased in the condition of denser acoustic density and longer sonication time with acoustic frequency of 40kHz.

  • PDF

Anaerobic Digestion Biochemical Sludge Produced from Municipal Sewage Treatment Process (하수처리시설에서 발생된 약품 잉여슬러지의 혐기성 소화 특성)

  • Cho, Sang Sun;Kang, Ho;Lim, Bong Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.561-569
    • /
    • 2014
  • This study was carried out to get the characteristics of anaerobic digestion for chemical/biological sludge produced from municipal sewage treatment plant for phosphorus. Anaerobic mesophilic batch tests showed that the ultimate biodegradability of waste activated sludge showed 31%, PACl sludge 24%, Alum sludge 26%, respectively. At the S/I 1.0, 75% of total biodegradable volatile solids (TBVS) of waste activated sludge was degraded with an initial rapid decay coefficient, k1 of $0.1129day^{-1}$ and 74% of TBVS of PACl sludge with k1 of $0.0998day^{-1}$, and 76% of TBVS of Alum sludge with k1 of $0.1091day^{-1}$ for 20 days. During the operation of SCFMRs, the 3 reactor (Control, PACl, Alum) pH maintained 6.7~7.0 and the reactor alkalinity maintained 1,800~ 2,200 mg/L as $CaCO_3$. The average biogas production rates of SCFMRs fed with PACl sludge and Alum sludge were 0.089 v/v-d and 0.091 v/v-d, respectively, which was 27~28% lower than that of the control (0.124 v/v-d) at an HRT (hydraulic retention times) of 20 days. And the methane content during the operation ranged 70~76% in 3 reactor. The average TVS removal efficiency of SCFMRs fed with PACl sludge and Alum sludge were 19.6% and 19.9%, respectively, at an HRT of 20 days, which showed 4% lower than that of the control (23.8%). The average BVS removal efficiency of SCFMRs fed with PACl sludge and Alum sludge were 25.8% and 26.9%, respectively, at an HRT of 20 days, which was 8~9% lower than that of the control (34.5%).

A Study on the Solubilisation of Excess Sludge using Microbubble Ozone (잉여슬러지 가용화를 위한 마이크로버블 오존 이용에 관한 연구)

  • Lee, Shun-Hwa;Jung, Kye-Ju;Kwon, Jin-Ha;Lee, Se-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.325-332
    • /
    • 2010
  • This study was conducted with the experiment of solubilisation of excess sludge by microbubble ozone process. To improve ozone contact efficiency, microbubble ozones which its diameter were the avearge 30 ${\mu}m$, microbubble size less than 40 ${\mu}m$ occupied about over 90% of all. In treating sludge using microbubble ozones, in case microbubble ozones are injected at microbubble ozone dosage of 0.34 g $O_3/g$ SS or less regardless of sludge concentration, microbubble ozone consumption rate was found to be 100% with no emission of waste ozones. In treating sludges by each concentration, in case the initial SS concentration of sludge is set to 6,447 mg/L, 5,557 mg/L, 3,180 mg/L, 1,092 mg/L and 515 mg/L, the amount of removed SS tended to increase with increase in initial SS concentration for the same microbubble ozone dosage, and treatment of sludge with high initial SS concentration was effective in raising the oxidation efficiency of microbubble ozones. On the other hand, as a result of reviewing acid, alkali and microbubble ozone treatment as composite treatment of sludge, use of acid treatment for the pre-treatment of microbubble ozone was more effective than alkali treatment, and in case of treatment at microbubble ozone dosage 0.05g $O_3/g$ SS with the concentration of sulfuric acid infused in the sludge, the amount of removed SS, 153.9 g, was 1.9 times more than 81.2 g the amount of single treatment of microbubble ozone.

Positive Pilot Research of SBR Process with Flexible Vertical (가변형 간벽을 이용한 SBR 공정의 실증 Pilot 연구)

  • Kim, Man-Soo;Park, Jong-Woon;Park, Chul-Whi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.438-444
    • /
    • 2005
  • This study is to install the flexible vertical in order to separate not only the time but also the space in the single reactor by opening and closing the flexible vertical, and to intensify the aerobic, anaerobic and anoxic reactions by reducing the time to activate the microorganism for nitrification, denitrification, release of organic phosphate and luxury uptake of ortho-phosphate. Eventually the result of this study obtained each 90.9%, 76.4% for the removal efficiency of total nitrogen and phosphate. Also, content rate of phosphate at excess sludge was higher $25{\sim}30%$ for SBR reactor with the flexible verticals than existing SBR process. It would be concluded that SBR reactor with flexible verticals is promising for nitrogen and phosphate removal conditions than conventional SBR processes.