본 연구는 고추분쇄용 세라믹 롤 분쇄기를 이용하여 고춧가루 생산시, 분쇄효율을 향상시키고자 기존의 롤 분쇄속도 40rpm(0.352m/s)에서 80rpm(0.704%)으로 증가시키고, 기존의 롤 회전비 2:1에서 5:1로 증가시켜 고추분쇄시 전단력 증가로 분쇄능을 향상시켰고, 연구 내용의 주요 결과를 요약하면 다음과 같다. 1. 세라믹치형롤 분쇄속도 40rpm(0.352m/s)에서는 롤 회전비 2:1에서 1,190$\mu\textrm{m}$ 입자가 32.7%, 590$\mu\textrm{m}$ 입자가 19.7%였고, 롤 회전비를 5:1로 증가시 590$\mu\textrm{m}$ 입자가 30.9%, 420$\mu\textrm{m}$ 입자가 17.2%로 중간 미분쇄 영역의 분포가 증가하여 미분쇄 효율이 향상됨을 알 수 있었다. 2. 분쇄물의 롤 통과횟수에 따른 분쇄능은 세라믹치형롤 모두 분쇄속도 80rpm(0.704m/s)에서 분쇄물의 미분쇄능이 향상되었고, 분쇄생성물의 임계처리 횟수가 3~4차임을 분석할 수 있었다. 3. 보통 고춧가루를 생산하는데 분쇄속도 40rpm(0.352m/s), 80rpm(0.704m/s), 두 롤의 회전비 2:1, 3:1, 4:1하에서는 생산되지 않았으나, 롤 회전비 5:1에서는 분쇄속도 40rpm(0.352m/s)일 경우 7차 분쇄후에, 분쇄속도 80rpm(0.704m/s)일 경우 5차분쇄후에 생성되어 분쇄처리횟수가 2회정도 단축되어 전단력 증가로 인하여 분쇄능이 향상된 것으로 분석되었다. 4. 기존의 고춧가루 분쇄조건인 분쇄속도 40rpm(0.352m/s), 롤 회전비 2:1보다 본 연구에서 개발한 분쇄속도 80rpm(0.704m/s), 롤 회전비 5:1인 분쇄조건이, 분쇄처리 횟수 단축 등이 분석됨으로서 섬유질이 많이 포함된 고춧가루 등의 재료가공 분쇄기술이 향상된 것으로 분석되었다.. 마늘재배 일관기계화에 의한 노동투하시간과 비용 -종자준비부터 통마늘선별까지의 일관기계화로 투입된 주요작업의 노력은 75∼76%가 절감되고, 재배규모 3ha기준시 비용은 44-53%절감되었음. the annealing texture. Observations by TEM and EBSD revealed the formation of very fine grains of ∼1.0$\mu\textrm{m}$ after CCSS.he dislocations form local defect arrangements at the grooves permitting the substantial reduction in defect density over the remainder of the interfacial area.한 최대의 감자 재배지역을 형성하였다. 제주도는 산지지형과 따뜻한 기온으로 2기작이 가능하고, 감자가공 공장설립과 교통발달에 따른 육지 시장과의 접근이 용이해졌기 때문에 남한에서 2번째로 큰 감자재배지역이 되었다.(요약 및 결론에서 발췌)그람양성균에서 효과적이었으며, 농도별 항균력시험 결과 농도가 증가할수록 비례하여 저해율도 증가함을 알 수 있었다. 첨가농도를 달리하여 미생물의 생육도를 측정한 결과, fraction II磎꼭\ulcorner경우 그람양성균에 대해 500 ppm 이상에서 뚜렷한 증식억제효과를 나타내었다.서 뚜렷한 증식억제효과를 나타내었다.min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한 대조군은 1.40$\pm$0.24(100%)에 비하여 I3C 저농도 투여 실험군(Group 1; 0.85$\pm$0.23; 61%, P<0.01), 그리고 I3C 고농도 투여 실험군(Group 2 ; 1.32$\pm$0.29 ; 94%)의 순으로 감소하였다. 선종의 크기별 종양의 발생개수의
반도체 소자의 미세화와 더불어 세정공정의 중요성이 차지하는 비중이 점점 커지고, 이에 따라 세정 기술 개발에 대한 요구가 증대되고 있다. 기존 세정 기술은 화학약품 위주의 습식 세정 방식으로 패턴 손상 및 대구경화에 따른 어려움이 있다. 따라서 건식세정 방식이 활발하게 도입되고 있으며 대표적인 것이 에어로졸 세정이다. 에어로졸 세정은 기체상의 작동기체를 이용하여 에어로졸을 형성하고 표면 오염물질과 직접 물리적 충돌을 함으로써 세정한다. 하지만 이 또한 생성되는 에어로졸 내 발생 입자로 인해 패턴 손상이 발생하며 이러한 문제점을 극복하기 위하여 대두되는 것이 가스클러스터 세정이다. 가스 클러스터란 작동기체의 분자가 수십에서 수백 개 뭉쳐 있는 형태를 뜻하며 이렇게 형성된 클러스터는 수 nm 크기를 형성하게 된다. 그리고 짧은 시간의 응축에 의해 수십 nm 크기까지 성장하게 된다. 에어로졸 세정과 다르게 클러스터가 성장할 환경과 시간을 형성하지 않음으로써 작은 클러스터를 형성하게 되며 이로 인해 패턴 손상 없이 오염입자를 제거하게 된다. 이러한 가스 클러스터 세정을 최적화하기 위해서는 설계 단계부터 노즐 내부 유동의 수치해석에 기반한 입자 크기 분포를 계산하여 반영하는 것이 필요하다. 따라서 본 연구에서는 상용 수치해석 프로그램을 이용하여 세정 환경을 조성하는 조건에서의 노즐 내부 유동을 해석하고, 이를 통해 얻어진 수치를 이용하여 aerosol general dynamic equation (GDE)를 계산하여 발생하는 클러스터의 크기 분포를 예측하였다. GDE 계산 시 입자의 크기 분포를 나타내기 위해서는 여러 가지 방법이 존재하나 본 연구에서는 각 입자 크기 노드별 개수 농도를 계산하였다. 노즐 출구에서의 가스 클러스터 크기를 예측하기 위하여 먼저, 노즐 내부 유속 및 온도 분포 변화를 해석하였다. 이를 통하여 온도가 급격하게 낮아져 생성된 클러스터의 효과적 가속 및 에너지 전달이 가능함을 확인할수 있었다. 이에 기반하여 GDE를 이용한 입자 크기를 예측한 결과 수 나노 크기의 초기 클러스터가 형성되어 온도가 낮아짐에 따라 성장하는 것을 확인할 수 있었으며, 최빈값의 분포가 실험적 측정값과 일치하는 경향을 가지는 것을 볼 수 있었다. 이는 향후 확장된 영역에서의 유동 해석과 증발 등 세부 요소를 고려한 계산을 통해 가스 클러스터 세정 공정의 최적화된 설계에 도움이 될 것이다.
Hydroxypropyl methylcellulose phthalate (HPMCP)에 isophorone diisocyanate (IPDI)와 2-hydroxyethyl methacrylate (HEMA)를 순차적으로 반응하여 우레탄 그룹을 형성하고 HPMCP에 비닐 그룹을 도입하여 반응형(reactive) HPMCP를 합성하였다. 제조된 반응형의 HPMCP와 반응전의 순수한 HPMCP의 분자량, 산가, 임계 미셀 농도(CMC) 등을 측정하였으며, 스티렌의 유화 중합에 고분자 유화제로서 도입하였다. HPMCP의 함량을 단량체인 스티렌 대비로 6, 9, 12, 18, 24 wt%로 도입하여 HPMCP 혼성 폴리스티렌 나노입자를 제조하고, 최대 중합 속도($R_{p,max}$), 입자당 평균라디칼 개수(n), 입자 크기 분포 등을 분석하였다. 또한 제조된 HPMCP 혼성 폴리스티렌 나노입자의 모폴로지를 TEM으로 분석하여 core-shell 구조임을 확인하였으며, TGA를 이용하여 열적안정성의 변화를 분석하였다. 반응형 HPMCP는 순수 HPMCP와는 달리 HEMA의 비닐 그룹으로 인해 높은 중합속도와 작은 입자 크기, 높은 표 값을 나타내었으며, 높은 젤 함량을 나타내었다.
본 연구는 최근 들어 대도시 대기오염물질의 주요 배출원 중 하나로 대두되고 있는 음식점 고기구이로부터 배출되는 미세먼지의 배출 특성에 대하여 연구한 것이다. 본 연구에서는 돼지고기와 소고기의 구이 시 발생되는 미세 입자상물질의 배출특성을 파악하기 위해 고기구이 시 발생되는 미세먼지를 효과적으로 채취할 수 있는 고기구이 챔버를 제작하였으며, 다단충돌식 입경분립기와 광산란식의 미세먼지 측정기를 사용하였다. 연구 결과 다단충돌식 입경분립기를 사용하여 측정한 미세먼지 농도 결과에서는 전반적으로 돼지고기의 경우가 소고기보다 높게 나타났다. 미세먼지의 입경분포 특성을 살펴본 결과 돼지고기와 소고기 모두 $1.95{\sim}3.2{\mu}m$의 입경에서 가장 높은 농도를 나타냈다. 고기 1 kg당 배출되는 미세먼지의 배출계수는 돼지생고기, 돼지양념고기, 소생고기, 소양념고기에서 각각 1.36 g/kg, 1.03 g/kg, 1.23 g/kg과 0.92 g/kg으로 나타났다. 광산란식 측정기를 사용하여 측정한 결과에서는 돼지고기와 소고기 모두 $1.6{\sim}2.5{\mu}m$와 $2.5{\sim}3.5{\mu}m$ 입경에서 가장 높은 농도로 나타나 $2.5{\mu}m$를 중심으로 높은 농도로 나타난 다단충돌식 결과와 유사한 특성을 보였다. 광산란식에 의해 측정된 배출계수는 돼지생고기, 돼지양념고기, 소생고기, 소양념고기에서 각각 3.37 g/kg, 2.76 g/kg, 2.93 g/kg과 2.77 g/kg으로 나타나 다단충돌식 결과보다 2배에서 3배 이상 높게 측정되었다. 또한 $PM_{2.5}/PM_{10}$의 비는 돼지생고기, 돼지양념, 소생고기, 소양념고기에서 각각 0.56, 0.58, 0.56 그리고 0.58로 나타나 중량농도에서도 $PM_{2.5}$가 많음을 알 수 있었다. 중량농도를 입자의 비중을 1로 가정하여 산출한 개수농도로 환산한 결과를 보면 다단충돌식 입경분립기로 측정한 결과는 $10^{19}$개로 나타났고, 광산란식으로 측정한 결과에서는 $10^{16}$개 수준으로 나타나 다단충돌식 입경분립기의 경우에서 보다 높은 것으로 나타났다.
As an experiment investigation, the effects of ethanol blended gasoline fuel with different injection method on nano-sized particle emission characteristics were examined in a 0.5L spark-ignited single-cylinder engine with a compression ratio of 10. Because this engine nano-particles are currently attracting interest due to its adverse health effects and their impact on the environments. So a pure gasoline and an ethanol blended gasoline fuels, namely E85 fuel, used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that the effect of ethanol blending gasoline caused drastic decrease of nano-particle emissions when port fuel injection was used for making better air-fuel mixture than direct fuel injection. Also injection timing, specially direct fuel injection, could be a dominant factor in controlling the exhaust particle emissions.
부유사 수리실험에서 부유사의 농도를 측정하는 것은 불확실성이 매우 크다. Einstein(1950)은 유사의 pickup function 결정에서 이러한 불확실성 때문에 유사입자의 거동을 발생시키는 양력의 확률을 적용하기도 하였다. 일반적으로 부유사의 측정은 부유사 채집기를 통해 수행하지만, 시간적으로 비효율 적이며, 채집 시 채집기의 부피로 인한 난류 발생으로 채집 후 흐름 변화가 발생할 수 있다. 수리실험의 규모라면 이 문제는 더욱 부각될 수 있다. 연속적인 부유사의 농도 측정을 위해 이러한 점은 개선되어야 하는 문제이다. 본 연구에서는 유사 실험의 이러한 단점을 극복하고자 image processing 기법을 적용하였다. Image processing은 부유사의 농도가 증가할수록 탁도가 증가하는 특성을 이용하여, 부유사 농도를 추정하는 방법이다. 이 과정에서 RGB(Red-Green-Blue)로 색을 표시하는 방식에서 image를 변환하여 gray scale로 전환해야 하며, 파(wave)의 전파에 의한 image 결과의 변형은 없다고 가정하였다. Gray scale과 탁도와의 관계를 도출하기 위해 하상에 유사를 포설하고, 단파(surge)를 발생 시켰다. 실험은 길이 12.0m, 폭 0.8m, 높이 0.75m의 개수로에서 수행하였으며, 수로 상류에 sluice형 gate를 급격하게 개방하는 것으로 단파를 재현하였다. 탁도 측정을 위해 유사 채집기를 이용하였으며, 상기에서 제시한 흐름 교란문제로, 1지점에서 1개의 시간동안만 채집을 수행하였으며, image의 촬영을 병행하였다. 또한 data의 정확도를 높이기 위해 3번의 반복실험을 수행하였다. 실험결과 gray scale과 탁도와는 일정한 관계가 나타났으며, 이를 토대로 gray scale-SSC(suspended sediment concentration)와의 관계를 도출하였다. Bayesian 분석을 이용하여 image processing의 보정(확률적 보정)을 추가적으로 수행하였다. 최종적으로 실측한 값과 image processing을 통한 값을 1:1 curve를 통해 비교하였으며, 약 9%의 평균 오차가 발생하여, image processing과 bayesian 적용을 통한 부유사 농도 측정은 신뢰할 만한 결과를 도출하는 것으로 판단된다.
양성자 치료는 브래그 피크로 인해 우수한 치료 기법으로 알려져 있다. 양성자의 치료 효과를 높이기 위해 금 나노입자를 종양에 분포시켜 흡수선량을 높이는 방법이 연구되고 있다. 마이크로미터와 나노미터 범위에서 금 나노입자를 다루었던 것을 밀리미터 범위에서 금 나노입자를 전산모사 할 수 있는 방법을 제시하였다. 전산모사를 위해 Geant4 툴킷을 사용하였다. 인체와 유사한 물과 금 나노입자가 균일하게 분포되어 있다는 것을 가정하고 밀도비를 통해 금 나노입자의 개수 또는 농도를 조절하였다. 브래그 피크 위치에서 밀도비가 5%일 때 금 나노입자로 인해 순수 물 팬텀에 비해 흡수 에너지의 이득이 거의 2배로 나타났다. 밀도비가 증가할수록 흡수 에너지의 이득은 선형적으로 증가하였다. 브래그 피크 위치에서 금 나노입자가 하나의 복셀에만 분포하고 있을 때 양성자의 에너지는 자신 주변의 복셀에만 영향을 미치지만, 넓은 영역에 금 나노입자가 분포하는 경우 순수 물 팬텀에서 최고 흡수 에너지 (9.95 keV)의 95% 흡수 에너지 (9.46 keV)를 나타내는 부피는 16배 큰 영역에서 흡수 에너지의 이득이 나타났다. 그리고 이 영역은 밀도비가 증가할수록 증가하였다. 밀리미터 범위에서 금 나노입자의 밀도비와 RBE의 관계를 정량화하는 등 추가적인 연구가 필요하다.
유사(sediment)란 지각의 풍화작용에 의해 생성되어 유수나 바람 등에 의해 침식, 이송, 퇴적된 물질을 말하며, 일반적으로 하천유사(fluvial sediment)를 말한다. 유사의 크기는 작게는 미세한 점토입자부터 크게는 자갈에 이르기까지 매우 다양하며, 하천에서의 소류사량과 부유사량을 포함한 총유사량의 추정은 하천유사 문제의 기본이며 하천내의 수리구조물의 설계 및 유지관리, 하천개수 및 하도의 안정, 홍수터 관리, 저수지의 설계 및 운영 등 수자원 개발 및 관리를 위한 하천계획에 필요한 기본적 요소 중 하나이다. 본 연구에서는 중소하천에서의 실측을 통한 유사산정을 위해 대상하천에서 각 유량에 따른 부유사를 채취하여 시료분석을 통한 결과와 대상하천의 수리특성을 분석하여 총유사량의 산정 및 분석을 하였다. 이를 위하여 대상하천에 대하여 알맞은 측정조사지점을 선정하여 15회에 걸쳐 현장측정을 시행하였으며, 현장 측정시 유량측정을 위한 수위 및 유속을 측정하였고, 부유사농도 및 부유사입도분석을 위한 시료를 채취하여 실내 실험시 SS분석 및 BW관 분석을 시행하였다. 대상하천의 현장실험 측정성과와 수리특성을 기초자료로 하여 각 회차에 걸친 총유사량의 산정을 하였으며, 총유사량의 산정은 총유사량 추정 방법들인 직접 실측에 의한 방법, 간접계산에 의한 방법, '실측+계산'에 의한 방법 중 신뢰도가 높으며 경제성이 높은 '실측+계산'에 의한 방법과 간접계산에 의한 방법을 사용하는 공식으로 산정하였다. 결과들의 비교와 대상하천의 수리특성들에 대한 연구를 통해 적정공식을 선정하고 공식의 선정 원인에 대한 연구를 시행하였다.
활성슬러지 공정의 생물학적 반응조 및 2차 침전지 설계와 관련해서 정상상태 설계식(Ekama et al., 1986; WRC, 1984) 및 1-D flux theory 설계식(Ekama et al., 1997)을 사용하여 슬러지 농도에 따라 두 가지 공정을 일괄적으로 설계하였다. 또한, 슬러지 농도에 따른 생물학적 반응조 및 2차 침전지 크기 변화를 도식화하고, 유입수 성상이나 슬러지 침강성, 환경 및 운전조건 그리고 첨두유량이 각 공정의 크기결정에 미치는 영향을 평가하였다. 먼저유입수의 특성과 관련하여 난분해성 용해성 물질(fs,us)은 반응조 크기 결정에 큰 영향이 없었지만, 난분해성 입자성 물질(fs,up), 무기고형물(fi) 및 유기물 강도(Sti)의 영향은 크게 나타났다. 운전인자인 Sludge Retention Time (SRT)의 경우, 슬러지 생산량과 관련되므로 반응조 크기결정에 역시 큰 영향을 미쳤다. 2차 침전지의 설계요소인 Sludge Volume Index (SVI) 및 첨두유량이 커질수록 2차 침전지에 수리학적 부하가 커지게 되어, 2차 침전지가 크게 설계되어야 했다. 본 설계과정에서는, 온도 변화가 미치는 영향은 작게 나타났다. 대규모 처리장의 경우 반응조 및 2차 침전지 전체 크기 결정과 함께 1개조 크기의 상한선을 설정하여 개수를 산정하였다. 최종적으로 엔지니어는 여러 가지 슬러지 농도에 대하여 반응조 및 2차 침전조의 크기, 개수 및 현장조건을 고려한 건설비용을 반복적으로 계산하게 되면, 최소비용 설계와 함께 최적의 슬러지 농도를 결정하게 된다.
분무연소합성법을 이용하여 나노크기의 물라이트(3Al$_2$O$_3$$.$2SiO$_2$) 콜로이드를 제조하였다. 연소반응을 위한 산화제로서 Al(NO$_3$)$_3$$.$9$H_2O$와 환원제(연료)로서 CH$_{6}$N$_4$O를 사용하였으며, 실리카 소스로서 콜로이드 실리카를 첨가하였다. 분무된 액적들의 착화를 위해 연소반응기의 온도를 80$0^{\circ}C$로 유지하였다. 액적의 응고에 의한 액적크기 성장을 억제하기 위하여 금속 스크린 필터를 사용함으로써 액적의 개수 농도를 감소시켰으며, 에어로졸 입자의 체류시간을 2.5초로 유지하여 열 유체의 흐름을 층류로 유도하였다. 제조된 입자들의 모양은 모두 구형이었으며, 평균입자크기는 130nm이었다 XRD와 TEM 분석 결과 각각의 초미립자들은 정량화합물의 물라이트 결정성을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.