원자력 방사능 폐기물 또는 원자력 발전소 해체시 발생 가능한 세슘 이온은 인체뿐만 아니라 생태계 환경에도 큰 악영향을 미친다고 알려져 있다. 이러한 세슘 이온은 자연 속으로 손쉽게 스며들어 발생한 지역뿐만 아니라 쉽게 퍼지게 되어 넓은 지역까지 피해를 주게 되며, 반감기가 30년으로써 한번 자연계에 누출되면 장시간 잔존하여 인간 및 생태계에 악영향을 미치게 된다. 세슘이온이 몸속에 들어오게 되면 장에서 몸으로 100% 흡수되며 내장에 축척되어 연조직 전체에 분포하게 되며 갑상선 암과 같은 심각한 위험에 초래하게 된다. 2011년 발생한 후쿠시마 원전 사고 이후 국내에서도 많은 관심을 가지기 시작하였으며, 따라서 수중의 세슘이온을 제거하기 위하여 나노 입자 형태의 기능성을 가진 물질들을 적용한 많은 연구가 이루어지고 있다. 이러한 나노물질들은 수중의 세슘이온 제거에 대하여 우수한 제거효율을 보여주고 있으나 나노 입자 특성상 사용 이후 회수가 어려워 기능성 물질들의 확산 및 축적에 따른 2차 환경오염의 문제점까지 발생하게 된다. 최근 수처리 분야에서 외부 자기장을 주게 되면 자성을 띄게 되는 물질인 자성체에 대한 관심이 급등하고 있다. 이러한 자성체들은 수중에서 별도의 회수 시스템 없이 자성으로 인하여 완벽히 자기분리 된다. 세슘제거에 탁월한 기능성 물질과 완벽한 자기분리가 가능한 자성체를 결합하여 특별한 회수장치 없이 외부 자기장만 주어진다면 수중의 세슘을 효과적으로 제거 또는 처리할 수 있다. 자성체 입자 표면에 흡착제인 프러시안 블루나 제올라이트와 같은 흡착제를 합성하여 수중의 세슘을 제거하는 연구가 활발히 이루어지고 있다. 그러나 기존의 자성체보다 좀 더 높은 자성을 가지고 있으며 외부 자기장에 의해 강하게 반응을 한다고 알려져 있는 강자성체(Ferromagnetic)를 사용하게 된다면 흡착제와 결합 이후 더욱더 강한 자성을 가진 흡착제가 탄생하며 이를 사용하면 높은 처리율뿐만 아니라 높은 슬러지 회수율을 가질 수 있다. 따라서 본 연구는 흡착제나 이온교환수지와 같은 기능성 물질을 사용하여 수중의 세슘을 제거하는 메커니즘과 강자성체가 가지고 있는 강한 자성의 성질을 결합한 복합체 제조에 대한 연구조사를 중점적으로 실시하였다. 본 연구에 의해 연구 조사된 결과를 바탕으로 수중의 세슘 이온에 대하여 높은 제거효율과 회수율을 가지는 새로운 형태의 복합체 제조에 관한 정보를 제공하고자 한다.
2011년 동일본 지역에서 발생한 지진으로 인하여 후쿠시마 다이이치에 위치한 원자력 발전소에서 다양한 방사성 물질들이 바다, 하천 그리고 대기와 같은 자연환경 속으로 유출되었다. 방사성 세슘(Cesuim, $Cs^{137}$)은 다양한 방사성 물질들 가운데 반감기(Half-life)가 30.17년으로 가장 긴 물질이다. 방사성 세슘이 환경 생태계로 한번 유출될 경우 긴 반감기과 널리 퍼지는 성질로 인하여 오랜 시간동안 넓은 지역에 막심한 피해를 초래하므로 효과적인 처리방법을 통해 안전하게 처리하는 것이 아주 중요하다. 세슘을 제거하기 위하여 물리적, 화학적, 생물학적 등 다양한 방법들을 통해 연구를 진행하고 있으며, 특히 세슘을 제거하는 아주 효과적인 방법 중 하나인 프러시안 블루(Prussian Blue, PB) 흡착제를 적용하는 방법이 많이 주목받고 있다. 그러나 프러시안 블루는 미세한 분말입자로서 수처리에 사용하게 되면 처리 후 발생되는 슬러지들을 수중으로 부터 분리하기 어려운 한계점을 가지고 있다. 최근 연구에서는 프러시안 블루의 적용 한계점를 극복하기 위하여 자성체(Magnetic substance)를 물리적 지지체로 이용하여 외부 자기장을 통해 수중으로 분리하는 방법들이 연구되고 있다. 자성체란 외부 자기장이 주어지게 되면 입자들 표면에 자성력을 띄는 물질들을 말한다. 본 연구에서는 자성체 종류들 가운데 가장 높은 자성력을 지닌 강자성체(Ferromagnetic Substance)를 물리적 지지체로 하여 산화과정, 실란과정, 합성과정을 거쳐 강자성체 입자의 표면에 프러시안 블루를 합성한 새로운 형태에 합성체를 제조하고, 제조된 합성체를 이용하여 수중에 존재하는 세슘 제거 능력을 평가하였다. 제조된 합성체의 물리적 특성을 분석하기 위하여 SEM, XRD를 이용하여 합성체 입자의 표면 분석을 진행하였다. 합성체의 세슘 제거 능력을 평가하기 위하여 임의 제조된 0.5mg/L의 세슘 농도를 가진 원수 100ml에 제조된 새로운 형태의 합성체 1g을 투입한 뒤 1분간의 반응시간 동안 반응한 이후 잔류 세슘을 측정한 결과 수중의 존재하는 세슘에 대해 99.9%의 세슘 제거율을 기록하였다. 자가분리(Magnetic Seperate)의 원리를 이용하여 수중으로부터 회수율을 측정한 결과, 99%의 합성체 회수율을 얻었다. 실험결과를 통해 외부자기장이 주어지게 되면 수중으로부터 합성체를 대부분 분리하여 회수할 수 있다고 판단된다. 본 연구를 통해 개발된 새로운 형태의 합성체는 수중의 세슘 처리 공정에서 사용자가 직접 접촉하지 않고 세슘제거 및 외부자기장을 통해 수중으로부터 분리가 가능한 합성체라고 판단된다.
현재 우리나라 입자상물질에 대한 대기환경기준은 공기역학적 직경 10 $\mu\textrm{m}$ 이하인 PM$_{10}$ 기준이 연평균 70 $\mu\textrm{g}$/㎥ 및 일평균 150 $\mu\textrm{g}$/㎥이다. 그러나 영국의 PM$_{10}$ 기준은 24시간 평균 50 $\mu\textrm{g}$/㎥로 강화하여 입자상물질에 의한 건강피해를 줄이기 위해 노력하고 있다(EPAQS, 1995). 분진은 공기역학적 직경 2.5 $\mu\textrm{m}$를 기준으로 미세입자와 거대입자로 나누어지는 쌍극분포의 형태(Whitby et al., 1972)를 나타내며, 분진이 인체에 미치는 영향에 관한 많은 연구를 통해 10 $\mu\textrm{m}$ 이하의 입자가 호흡성 분진으로 인체에 더 유해한 영향을 미치고 있음이 밝혀졌다(Emison, 1988). (중략)
본 연구에서는 배연가스속에 함유되어 있는 휘발성 유기화합물과 입자물질 등의 오염물질을 보텍스 사이클론의 원리를 이용하여 동시에 제거하는 메카니즘을 규명하고 나아가 효율을 높이기 위한 영향인자들을 분석 하였다. 보텍스 사이클론 속에 접선방향으로 압축된 공기를 주입함으로써 Joule-Thomson 팽창에 의하여 형성된 저온부분에서 페놀, 탄산가스 및 수분이 활성탄소 입자표면에 응집, 응축 및 흡착이 일어나도록 하였다. 활성탄소와 같은 입자물질은 쉽게 응축될 수 있는 물질들이 저절로 응집이나 응축은 입자물질의 입경이 증가함에 따라 속도는 급속도로 빨라져서 제거효율이 상승된다. 본 연구실험에서 탄산가스와 페놀의 제거효율은 각각 87.3%와 93.8%로 얻어졌다. 그리고 페놀 제거효율은 톨루엔과는 달리 상대습도의 증가에 따라 함께 증가되었고, 활성탄의 주입으로 제거효율도 증폭되었다. Joule-Thomson 계수는 상대습도 10%~50% 범위에서는 도입되는 압력이 높아짐에 따라 같이 상승하였다. 실험의 결과로는 도입되는 압력과 수분이 보텍스 사이클론의 처리효율에 미치는 영향은 공기 속에 함유되어 있는 대상물질의 물리화학적 특성과 입자물질의 특성에 따라 많은 영향을 받고 있음을 알 수 있고, 따라서 휘발성 유기화합물의 제거효율은 수분의 양과 입자물질의 물리화학적 특성을 조절함으로 제어할 수 있다고 판단된다.
인광석 취급 산업체에서는 천연방사성물질(NORM)을 함유한 물질을 다량으로 취급하고 있어, 종사자들은 각 공정에서 발생하는 공기 중 입자의 흡입에 의해 내부피폭을 받을 수 있다. 흡입에 의한 내부피폭 방사선량은 입자의 특성에 의해 크게 좌우된다. 따라서 본 연구에서는 국내 최대 인광석 취급 산업체에서 공기 중 부유 입자의 크기 분포 및 농도, 입자의 모양 및 밀도, 그리고 방사능 농도를 평가 하였다. 다단계입자채집기를 이용하여 공기 중 입자를 채집하고 입자의 크기분포, 농도, 그리고 모양을 분석하였다. 입자의 공기역학적 직경은 0.03-100 ${\mu}m$까지 광범위하게 분포하였으며, 입자크기가 4.7-5.8 ${\mu}m$(기하학적 평균직경 = 5.22 ${\mu}m$) 혹은 5.8-9.0 ${\mu}m$(기하학적 평균직경 = 7.22 ${\mu}m$)인 범위에서 공기 중 입자의 농도가 최댓값을 나타냈다. 공기 중 부유입자의 농도는 공정에 따라 최대 수백 배 이상 차이를 보였으며, 중장비 작업이 이루어지는 창고에서 높은 농도를 보였다. 반면에 인산석고 적치장에서는 입자의 부유방지를 위한 덮개 및 살수 그리고 비료공장 제어실에서는 환기시설을 갖추고 있어 상대적으로 입자의 공기 중 농도가 낮게 나타났다. 입자의 모양은 모든 측정 장소에서 구형에 가깝게 나타났으므로, 인광석 취급 시설에서 발생하는 입자의 모양인자 값을 1로 정하였다. 각 공정에서 시료를 채집하여 입자의 밀도를 분석하였다. 인광석의 밀도는 약 3.1-3.4 $gcm^{-3}$, 염화칼륨의 밀도는 약 2.7 $gcm^{-3}$, 공정 부산물인 인산석고의 밀도는 약 2.1-2.6 $gcm^{-3}$, 최종제품인 복합비료의 밀도는 약 1.7 $gcm^{-3}$으로 나타났다. 감마분석기를 이용하여 원료물질, 공정부산물, 생산제품 내 $^{226}Ra$, $^{228}Ra$, $^{40}K$ 핵종의 방사능 농도를 측정하였다. 인광석에는 주로 우라늄계열 핵종을 많이 함유하고 있었으며, 그 농도는 원료 산지에 따라 94-866 $Bqkg^{-1}$ 정도였다. 인광석 내에 존재하는 우라늄계열 핵종 중 우라늄은 생산품인 인산 혹은 비료에 농축되었으며, 라듐은 부산물인 인산석고에 농축되었다. 최종제품인 비료의 경우에는 $^{226}Ra$과 $^{228}Ra$이 거의 존재하지 않았으나, 제품생산을 위해 첨가한 염화칼륨에 의해 $^{40}K$의 방사능 농도가 5,000 $Bqkg^{-1}$로 높게 나타났다. 본 연구에서 생산한 인광석 취급 산업체의 입자의 특성 평가 자료는 인산염 취급 산업체 종사자에 대한 방사선학적 안전성 평가에 이용될 수 있을 것이며, 최근 시행된 생활주변방사선 안전관리법에 따른 생활주변방사선 안전관리의 체계를 수립하기 위한 자료로 활용될 수 있을 것이다.
SnO$_2$를 모물질로 하는 가스센서는 n형 산화물 반도체로서 공기중의 산소의 흡탈착 및 전자의 수수에 의해 전기전도도의 변화로 특정 가스를 감지한다. 지금까지 반도체식 가스센서의 모물질로 가장 많이 연구되어 왔지만 아직도 선택성, 안정성 등 여러 가지 문제를 안고 있다. 그리고 개선방안으로 귀금속 촉매의 첨가 및 입자의 크기의 조절 등이 흔히 연구되어 왔다. 따라서 본 연구에서는 순수한 SnO$_2$ 를 이용하여 소결 온도 및 입자 크기에 의한 영향을 CO가스 및 수분에 대한 감도, 반응 시간을 통해 알아보았다. 수열 합성 및 침전 법으로 나노 크기의 SnO$_2$ 분말을 합성하여 스크린 인쇄법으로 후막 가스센서를 제조하였다 침전법에서 SnCl$_4$에 암모니아수로 pH=10.5로 적정하여 SnO$_2$ 분말을 얻었다. 그리고 입자 크기를 조절하기 위해 수열 합성 시 autoclave 내의 수열처리 온도를 100, 150, 20$0^{\circ}C$로 조절하여 SnO$_2$ 분말을 제조하고 입자 크기와 성분분석을 위해 XRD, SEM, TEM, BET 측정을 하였다. 그 결과 침전법으로 제조한 입자의 크기는 20nm 정도였으며 수열 처리한 SnO$_2$ 입자는 10nm이하의 미세한 입자를 얻을 수 있었다. 수열 합성 시 온도가 높아질수록 더 작은 입자 크기를 얻을 수 있었고 600, 7()0, 80$0^{\circ}C$ 열처리 후 입자성장이 침전법에 의한 SnO$_2$ 분말보다 더 작게 일어났다. 이렇게 제조한 나노크기의 SnO$_2$ 분말을 이용하여 습도 및 CO 가스에 대한 그 특실을 평가하였다. CO 20ppm에 대하여 40%정도의 감도를 보였으며 입자가 작아질수록 높은 감도를 보이는 것을 확인 할 수 있었다. 반면 CO 가스와 반응 후 회복 시 입자 의기가 작아질수록 회복이 늦어짐을 알 수 있었다. 그리고 15$0^{\circ}C$에서 습도에 대한 반응 후 회복시간을 조사해보니 같은 결과를 얻을 수 있었다. 이것은 입자 필기가 작아질수록 많은 흡착 사이트를 제공함으로써 높은 감도를 가지지만 반면 다량의 흡착된 가스들이 탈착 하는데 더 많은 시간이 소요되었기 때문이다.
나노입자의 특성과 기능은 bulk 물질과 달리, 나노 입자를 이루는 원소의 종류 뿐만아니라 크기와 모양에도 밀접한 연관이 있다. 이를 계산화학적으로 예측할 수 있다면 나노입자의 합성과 응용에 큰 도움이 될 것이다. 본 연구에서는 일정한 크기의 은 나노입자의 구조를 계산한 뒤, 바깥쪽의 두 원자 층을 무작위로 섞은 뒤 다시 구조최적화 계산을 거쳐 다양한 나노입자들의 구조를 찾았다. 이렇게 구해진 구조들의 에너지를 계산하고 원자를 하나 떼어낼 때의 에너지를 계산하여 응집 에너지를 구해 경향성을 분석해 보았다. 더 나아가, 나노입자를 이루는 각 원자 층의 개수가 하나 더 커질 때 필요한 에너지를 계산하여, 원자 하나당 평균을 내어 분석해보았다. 본 연구에서는 병렬화 된 밀도범함수이론 계산 프로그램을 이용해 100개가 넘는 입자의 계산이 가능하다는 것을 확인했고, 은 나노입자의 크기가 증가함에 따라 원자 하나가 추가되는 경우와, 원자 층 하나가 추가되는 경우의 그래프를 보고 경향성을 분석하였다. 이는 다른 화학적 환경에 있는 은 원자의 에너지를 계산하여 각각의 환경에서의 은 나노 입자의 크기를 예측하는 계산하는 데 초석이 될 것이다.
대기 중의 오염물질들은 지표면 환경과 식생, 농작물, 수면 등의 침적 대상 표면 그리고 생물 활동에 직접적인 피해를 줄 수 있고 토양오염과 수질오염원이 되는 오염물질 유입을 고려해야 하는 환경문제에 있어서 오염물질 농도 예측에 아주 중요한 역할을 한다. 입자상 물질의 건성침적은 습성 침적과 더불어 중금속이나 SO$_4$$^{2-}$ , NO$_3$$^{-}$ 및 NH$_4$$^{+}$와 같은 화합물을 생태계로 전달하여 생태계를 산성화시키거나 부영양화시킬 수 있는 잠재력을 가지고 있음에도 불구하고, 이러한 입자상 물질에 대한 건성 침적은 관측 결과들이 submicron particle들에 대한 침적 속도가 아주 작음을 보여주고 또한 particle들의 침적 과정의 복잡성 때문에 가스상 물질에 대한 건성침적보다 관심을 덜 받고 있다. (중략)
유기물/무기물 나노복합체를 이용하여 제작한 비휘발성 메모리 소자는 간단한 공정과 플렉서블 기기 응용 가능성 때문에 많은 연구가 진행되고 있다. 다양한 나노입자를 포함한 고분자 박막에 대한 연구는 많이 진행되었지만, 비휘발성 메모리소자에서 CdSe/InP 나노입자를 사용한 나노복합체의 전기적 안정성과 동작 메커니즘에 대한연구는 미흡하다. 본 연구는 CdSe/InP 코어/쉘 나노입자가 poly (N-vinylcarbazole) (PVK) 박막에 분산되어 있는 나노복합체를 이용하여 메모리 소자를 제작하여 전기적 특성과 안정성을 관찰 하였다. 소자 제작을 위해PVK 고분자를 용매인 클로로벤젠에 용해한 후, 헥산에 안정화 되어있는 CdSe/InP 나노입자를 초음파 교반기를 사용하여 고르게 섞었다. Indium-tin-oxide (ITO)가 증착한 유리 기판을 화학물질로 세척한 후 기판 위에 CdSe/InP 나노입자와 절연성 고분자인 PVK가 혼합된 용액을 스핀코팅 방법으로 도포하여 나노입자가 포함된 고분자 박막층을 형성하여 저항 변화층으로 사용하였다. 형성된 박막 위에 마스크를 사용하여 Al 상부전극을 고진공에서 열 증착하여 비휘발성 메모리 소자를 제작하였다. 제작된 소자의 전류-전압(I-V) 특성을 측정한 결과 동일전압에서 전도도가 좋은 상태 (ON)와 좋지 않은 상태 (OFF)인 두 개의 상태상 존재한다는 것을 확인하였고, CdSe/InP인 나노입자가 포함된 소자와 포함되지 않은 소자의 전기적 특성을 비교 분석하였다. 두 상태의 안정성을 ON 또는OFF 상태의 스트레스를 측정하여 두 상태의 안정성을 확인하였고, 실험결과를 바탕으로 메모리 소자의 동작 메커니즘을 기술하였다.
최근 들어 기후변화에 따른 강우패턴이 바뀌고 각종 하천개발이나 토목공사, 농경지, 경작지 등의 객토 등으로 인해 매년 탁수의 발생이 크게 증가하고 있는 추세이다. 특히 여름철 집중강우의 영향에 따라 상류지역 하천에서 발생하는 부유물질은 호수로 유입되어 장기간 체류하며 심각한 오염원으로서 수중생태계에 치명적인 영향을 주고 있다. 또한 하천과 호수의 상류지역의 농경지나 경작지에서 발생된 부유물질에는 과도한 비료의 사용으로 입자표면에 많은 인을 포함하고 있어 호수 수질악화 및 부영양화의 직접적 요인이 되고 있다. 이에 따라 세계 각국에서는 부유물질은 오염원뿐 아니라 생태계에 영향을 주는 인자로서 엄격히 규제하고 있으며, 특히 농업지역이 많은 하천에 대해서는 유역전체를 대상으로 부유물질에 대한 총량관리를 적용하고 있다. 그러나 우리나라의 경우 하천 수질기준 1급수의 부유물질 농도는 25 mg/l 로서 이는 선진국과 유사한 기준이나 실질적으로 규제가 어려운 실정이다. 수환경에서의 부유물질이란 수체 내 존재하는 유기성, 무기성 물질로써 입자 지름이 2mm 이하의 물에 용해되지 않는 물질을 말하는 것으로, 물의 탁도를 유발시키는 원인이 되며 빛을 차단하여 수생태계에 악영향을 초래한다. 국내 132개 하천을 대상으로 부유물질의 농도와 어류의 종 다양성간 상관성을 조사한 결과, 부유물질의 농도가 15 ~ 20 mg/l 이상에서 종 다양도는 1.0 이하로 급감하는 경향을 보였다(최재석 등, 2004). 한편, 대청호는 1975년부터 1980년에 걸쳐 건립된 저수 면적 $72.8km^2$, 저수량 15억톤의 인공호수로 우리나라 3번째 규모의 인공호수이다. 특히, 대전 및 청주지역의 식수는 물론, 생활용수 및 공업용수를 공급하는 중요한 수자원으로서 부유물질에 대한 모니터링 및 관리가 시급하나 저수 용량이 크고 체류시간이 길어 여름철 부영양화가 매년 반복되고 있다. 따라서 본 연구에서는 부유물질의 농도 변화에 따른 분광반사 특성을 조사하고, 이를 대청호의 Landsat 위성영상에 적용하여 대청호 내 부유물질의 농도변화를 추정하였다. 이와 함께 부유물질 농도 변화에 따른 탁수 환경 모니터링에 원격탐사 기법이 효과적임을 제시하고자 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.