• Title/Summary/Keyword: 입자분산 금속복합재료

Search Result 30, Processing Time 0.03 seconds

Dispersion Characteristics of Magnetic Particle/Graphene Hybrid Based on Dispersant and Electromagnetic Interference Shielding Characteristics of Composites (분산제에 따른 자성금속 무전해도금 기반 그래핀 분산 특성 및 복합재의 전자파 차폐 특성 연구)

  • Lee, Kyunbae;Lee, Junsik;Jung, Byung Mun;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.111-116
    • /
    • 2018
  • In this paper, magnetic FeCoNi particles have been grown through electroless plating on the surface of graphene, and then this hybrid material has been dispersed by various surfactants to prepare films. The pyridine surfactant shows the highest dispersability and low surface resistance value (351 Ohm/sq) and the electromagnetic shielding ability at the frequency of 10 GHz. Specially, the evaporation of the pyridine during the drying process could be able to form the internal conductive network and high dispersion of FeCoNi on the surface of graphene.

Comparison of Heating Behavior of Various Susceptor-embedded Thermoplastic Polyurethane Adhesive Films via Induction Heating (다양한 발열체가 분산된 폴리우레탄 접착 필름의 유도가열 거동 비교)

  • Kwon, Yongsung;Bae, Duckhwan;Shon, MinYoung
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The effect of nanoscopic and microscopic Fe, $Fe_3O_4$, and Ni particles and their shapes and substrate materials on the heating behavior of thermoplastic polyurethane (TPU) adhesive films was investigated via induction heating. The heat generation tendency of $Fe_3O_4$ particles was higher than that shown by Fe and Ni particles in the TPU adhesive films. When the Fe and Ni particle size was larger than the penetration skin depth, the initial heating rate and maximum temperature increased with an increase in the particle size. This is attributed to the eddy current heat loss. The heating behavior of the TPU films with Ni particles of different shapes was examined, and different hysteresis heat losses were observed depending on the particle shape. Consequently, the flake-shaped Ni particles showed the most favorable heat generation because of the largest hysteresis loss. The substrate materials also affected the heating behavior of the TPU adhesive films in an induction heating system, and the thermal conductivity of the substrate materials was determined to be the main factor affecting the heating behavior.

Fabrication of $YBa_{2}Cu_{3}O_{7-x}$-Ag Composite Superconductors by Pyrophoric Synthetic Method (발화합성법에 의한 $YBa_{2}Cu_{3}O_{7-x}$-Ag 복합 초전도체 제조)

  • Yang, Seok-U;Kim, Chan-Jung;Hong, Gye-Won;Sin, Hyeong-Sik
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1082-1089
    • /
    • 1998
  • To obtain fine dispersion of Ag particles in $YBa_2$$Cu_3$$O_{7-y}$ (123) superconductors, 123 samples were made by pyrophoric synthetic method using malic acid and the subsequent solid- state reaction. As the pyrophoric synthetic powder was used as a precursor material, fine 123 powder of submicron size was produced in a short reaction time. The added $Ag_2$O was converted to metallic Ag during Pyrophoric reaction and it accelerated both the formation of 123 phase and the grain growth via the enhanced mass transfer. The Ag particles of the sample sintered using the pyrephoric synthetic powder were more finely dispersed in the 123 matrix, compared to those of the sample sintered using the mechanically mixed powder, attributing to the improvement of the superconducting properties.

  • PDF

고출력 LED 패키지용 고밀도 W-20wt%Cu 나노복합체 제조에 관한 연구

  • Ryu, Seong-Su;Park, Hae-Ryong;Kim, Hyeong-Tae;Lee, Byeong-Ho;Lee, Hyeok;Kim, Jin-U;Kim, Yeong-Do
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.26.2-26.2
    • /
    • 2010
  • 최근에는 차세대 조명용 후보광원인 고출력 백색 LED를 개발하기 위한 경쟁이 치열하며, 이를 위해 업체가 고심하고 있는 가장 큰 문제 중의 하나가 칩에서 발생하는 열을 어떻게 관리하는가 하는 방열의 문제이다. 따라서, LED의 가장 큰 특징인 장수명을 손해보지 않기 위해서는 칩에서 발생되고 있는 열을 외부에 확산시키기 위한 기술 개발이 필수적이다. 다양한 방열소재 중 W-Cu 복합재는 W의 낮은 열팽창계수와 Cu의 높은 열전도도로 인해 방열소재로써 유망한 소재로 주목받고 있으나, 우수한 열적 특성을 발현하기 위해서는 고치밀화를 갖는 W-Cu 복합재 제조가 우선적으로 필요하다. W-Cu 복합체는 일반적으로 액상소결법을 통해 균일한 미세조직을 얻을 수 있으나, 열팽창계수를 낮추기 위해 Cu 함량이 적어지게 되면 치밀화가 어려우며 이를 해결하기 위해 나노입자를 갖는 분말을 이용하고자 하는 연구가 많이 진행되고 있다. 본 연구에서는 W과 Cu 산화물을 이용하는 것이 구성성분끼리의 편석이 발생하지 않으며, 소결성도 우수하여 양산화에 가장 접근한 방법으로 알려져 있다. 그러나, 지금까지의 얻어진 W-Cu 복합체의 경우, 분말상태에서의 얻어진 나노입자가 승온시에 마이크로 크기로 과도한 입자성장이 일어나기 때문에 소결 후에도 나노크기를 유지하기 어려울 뿐만 아니라, 구성상끼리의 응집체가 형성된다. 본 연구에서는 액상소결후에 W 입자가 Cu 기지내에 균일하게 분산되는 동시에 나노크기의 입자를 가지는 고분산 W-Cu 소결체를 얻고자 하였다. 이를 위해 금속산화물 분말의 분쇄를 위해 효과적인 방법으로 알려진 습식상태에서의 고에너지 볼밀링을 통하여 혼합된 텅스텐과 구리 산화물 분말의 수소환원공정을 통해 얻어진 100nm 이하의 입자를 가지는 W-20wt%Cu 나노복합분말을 출발분말로 사용하였다. W-20wt%Cu 나노복합분말의 성형체를 $1050^{\circ}C-1250^{\circ}C$의 온도범위에서 소결거동을 조사하였다. 그 결과, $1100^{\circ}C$ 온도에서 이론밀도에 가까운 소결밀도를 나타내었으며, 이는 기존에 비해 $100^{\circ}C$ 정도 치밀화 온도를 낮추는 결과이다. 소결체의 미세구조 관찰결과, 소결 후 약 200nm의 텅스텐 입자가 Cu내에 균일하게 분산되어 있었다. 제조된 W-Cu 시편에 대해서는 LED 응용성을 조사하기 위해 열전도도와 열팽창계수 등을 평가하였다.

  • PDF

Fabrication of Al2O3/Fe-Ni Nanocomposites by Pressureless Sintering and their Magnetic Properties (상압소결에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 자기적 특징)

  • Lee, Hong-Jae;Jeong, Young-Keun;NamKung, Seok;Oh, Sung-Tag;Lee, Jai-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.769-774
    • /
    • 2002
  • The powder mixture in which Fe-Ni alloy particles of 20 nm were homogeneously dispersed on $Al_2O_3$ particle surfaces was prepared by hydrogen reduction of $Al_2O_3$ and metal oxide powders. $Al_2O_3$/Fe-Ni nanocomposites fabricated by pressureless sintering were only composed of $Al_2O_3$ and ${gamma}$-Fe-Ni phases and achieved over 98% of the theoretical density at the sintering temperature above $1350^{\circ}C$. The highest strength and toughness of the composites were 574 MPa and 3.9 MP$a{\cdot}m1/2$, respectively. These values were about 20% higher than these of monolithic $Al_2O_3$ sintered at the same conditions. Nanocomposites showed ferromagnetic properties and coercive force was increased with decrease of the average particle size of dispersions.

Thermal and Mechanical Properties of Epoxy Composites Using Silica Powder (실리카 파우더를 이용한 에폭시 복합소재의 열적/기계적 특성)

  • Lee, Hye Ryeon;Song, JeeHye;Kim, Daeyeon;Lim, Choong-Sun;Seo, BongKuk
    • Journal of Adhesion and Interface
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Epoxy composites with concentrations of 5-70 wt% of silica particles were prepared in order to improve mechanical property and poor thermal stability. The mechanical and thermal properties were investigated and compared to the corresponding properties of neat epoxy composite. Furthermore, the effects of silane compound treatment on silica particles were observed by the experimental results of the tensile strength, glass transition temperature, and thermal stability of epoxy composite. Tensile strength of epoxy composites was measured by universal testing machine (UTM) and after that, the structure and morphology analysis of epoxy nanocomposites were analyzed by field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS). The increased solid content of CA0030 particle improved the tensile strength of epoxy/ modified composites to give 30-50 MPa. The thermal expansion coefficients (CTE) of neat epoxy resin and epoxy/silica composites measured with a thermomechanical analyzer (TMA) showed that the incorporation of silica particles was helpful to reduce the CTE of neat epoxy resin.

Synthesis and magnetic properties of copper and Ba-ferrite ferromagnetic composites by mechanical alloying (기계적합금화법에 의한 Cu-Ba ferrite 강자성 복합재료의 합성 및 자기적 성질)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • Synthesis of ferromagnetic composite materials for the $Cu-BaFe_{12}O_{19}$ system by mechanical alloying (MA) has been investigated at room temperature. A mixture of copper and barium ferrite with a weight ratio of $Cu:BaFe_{12}O_{19}=4:1$, 3 : 2, 2 : 3 and 1 : 4 was used. It is found that $Cu-BaFe_{12}O_{19}$ composite powders in which $BaFe_{12}O_{19}$ is dispersed in copper matrix are successfully produced by mechanical alloying of $BaFe_{12}O_{19}$ with Cu for 80 min. in all composition. The change in X-ray diffraction patterns and magnetic properties reflects the details for the formation of ferromagnetic metal matrix composite of pure Cu and $BaFe_{12}O_{19}$ during mechanical alloying. Magnetization of $Cu-BaFe_{12}O_{19}$ composite powders gradually increases with increasing the amounts of barium ferrite, whereas coercive force of MA powders gradually decreases due to the refinement of barium ferrite powders with ball milling. However, it can be seen that the coercivity of $Cu-BaFe_{12}O_{19}$ MA composite powders with a weight ratio of $Cu:BaFe_{12}O_{19}=4:1$ and 3 : 2 ball-milled for 80 min. is still high value of 1400 Oe and 1450 Oe, respectively suggesting that the refinement of barium ferrite powders during ball milling process tend to be suppressed due to the ductile copper.

Fabrication of Al2O3/Fe-Ni Nanocomposites by Atmosphere-controlled Sintering and their Properties (소결분위기 제어에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 특성)

  • Lee, Hong-Jae;Jeong, Young-Keun;Oh, Sung-Tag;Lee, Jai-Sung;Sekino, Tohru
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.199-203
    • /
    • 2002
  • To investigate an effect of sintering atmosphere on microstructure and properties of metallic particle dispersed ceramic based composites, the powder mixtures of $Al_2O_3$/Fe-Ni, synthesized by chemical solution process, were hot-pressed under different atmospheres such as hydrogen or argon gas and different sintering temperature. Hot-pressed composite in a hydrogen atmosphere exhibited less reaction phase of $FeAl_2O_4$ and enhanced mechanical properties than that in an argon atmosphere. Furthermore, decreasing hot-pressing temperature produced a refinement of ceramic matrix and metallic dispersion particles as well as improvement of mechanical properties. The change of mechanical properties in the composites with different sintering conditions was explained by microstructural characteristics relating to reaction phase formation.

Fabrication and Wear Behavior of Nano-sized Metal Particle Dispersed Al2O3 Nanocomposites (나노크기 금속입자가 분산된 Al2O3 나노복합재료의 제조 및 마모거동)

  • Oh Sung-Tag;Yoon Se-Joong;Jeong Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.503-507
    • /
    • 2005
  • Microstructure and wear behavior of A1203-based nanocomposites with Cu and Ni-Co dispersions were investigated. $Al_2O_3/Cu$ and $Al_2O_3/Ni-Co$ nanocomposites were fabricated by hydrogen reduction and sintering method using metal oxide and metal nitrates. The nanocomposites showed increased mechanical properties compared with monolithic $Al_2O_3$. In particular, high toughness and hardness were measured for the $Al_2O_3/Ni-Co$ nanocomposite consolidated by spark plasma sintering. A minimum value of wear coefficient comparable to the monolithic $Al_2O_3$ was obtained for $Al_2O_3/Ni-Co$ nanocomposite. Wear behavior is discussed in terms of microstructure and mechanical properties of nanocomposites

Shear bond strength of Universal bonding systems to Ni-Cr alloy (니켈-크롬 합금에 대한 다용도 접착 시스템의 전단결합강도)

  • Song, So-Yeon;Son, Byung-Wha;Kim, Jong-Yeob;Shin, Sang-Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the shear bond strength between Ni-Cr alloy and composite resin using universal adhesive systems coMPared to conventional method using metal primers. Materials and methods: For this study, a total of 120 cast commercial Ni-Cr alloy (Vera Bond 2V) disks were embedded in acrylic resin, and their surfaces were smoothed with silicon carbide papers and airborne-particle abrasion. Specimens of each metal were divided into 6 groups based on the combination of metal primers (Metal primer II, Alloy primer, Metal & Zirconia primer, MKZ primer) and universal adhesive systems (Single Bond Universal, All Bond Universal). All specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Shear bond strength testing was performed with a universal testing machine at a cross head speed of 1 m/min. Data (MPa) were analyzed using one-way ANOVA and the post hoc Tukey's multiple comparison test (${\alpha}$=.05). Results: There were significant differences between Single Bond Universal, All Bond Universal, Metal Primer II and Alloy Primer, MKZ Primer, Metal & Zirconia Primer (P<.001). Conclusion: Universal Adhesive system groups indicated high shear bond strength value bonded to Ni-Cr alloy than that of conventional system groups using primers except Metal Primer II. Within the limitations of this study, improvement of universal adhesive systems which can be applied to all types of restorations is recommended especially non-precious metal alloy. More research is needed to evaluate the effect of silane inclusion or exclusion in universal adhesive systems.