• Title/Summary/Keyword: 입자(particulate)

Search Result 857, Processing Time 0.024 seconds

The Characteristics of Particulate PAHs Concentrations at a Roadside in Seoul (서울시 도로변에서 입자상 다환방향족탄화수소의 농도 특성)

  • Lee, Ji-Yi;Kim, Yong-Pyo;Bae, Gwi-Nam;Park, Su-Mi;Jin, Hyun-Chur
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.133-142
    • /
    • 2008
  • Five intensive measurements of particulate PAHs were made at a roadside in Seoul from May 2005 to June 2006. The average concentration of particulate PAHs was $15.1{\pm}10.6ng\;m^{-3}$. The high concentrations of particulate fluoranthene and pyrene were observed in November 2005 due to the influence of the lower ambient temperature. Compared to the previous results at tunnel and ambient sites in Seoul, larger fraction of the high molecular PAH compounds which consist with five or six benzene rings, was observed at a roadside. This might indicate high influence of vehicle emission at a roadside. The distribution of diagnostic ratios for specific PAH compounds indicated that the influence of vehicular emission, especially diesel vehicular emission seems to be high at a roadside.

Microstructure and Mechanical Properties of $Al_2$O$_3$/t-ZrO$_2$ Particulate Composites (Al$_2$O$_3$/t-ZrO$_2$ 입자복합체의 미세구조 및 기계적 성질)

  • 심동훈;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.734-741
    • /
    • 1999
  • Al2O3/t-ZrO2 particulate composites were prepared by sintering at 150$0^{\circ}C$ and 1$600^{\circ}C$ for 2h in air and microstructure and mechanical properties of the composites were investigated. Although most ZrO2 particles existed at Al2O3 grain boundaries a few ZrO2 particles within Al2O3 grains. Al2O3 grain growth was depressed due to the pinning effect by ZrO2 particles. During sintering coarsening of intergranular ZrO2 particles occurred as a results of the elimination of ZrO2 intraagglomerate grain boundaries and the coalescence of dragged ZrO2 particles by migrating Al2O3 grain boundries. Changes in mechanical properties of Al2O3 composites were dependant on microstructure of Al2O3 matrix and on size and structure of dispersed ZrO2.

  • PDF

Simultaneous Application of Platinum-Supported Alumina Catalyst and Ozone Oxidant for Low-temperature Oxidation of Soot (백금담지 알루미나 촉매와 오존 산화제 동시 적용에 의한 탄소 입자상 물질의 저온 산화반응)

  • Lee, Jin Soo;Lee, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.752-760
    • /
    • 2018
  • The lowering of temperature for combustion of diesel particulate matters (or diesel soot) is one of the important tasks in automotive industry that is searching for a way to meet up "high-fuel efficiency, low-emission" standard. In this study, it was discussed how the use of ozone over platinum-based catalyst promotes a low-temperature soot oxidation occurred at $150^{\circ}C$. The use of platinum catalyst did not increase oxidation rate largely but was very effective in improving the selectivity of carbon dioxide. The pre-oxidation of NO into $NO_2$ using ozone was rather crucial in improving the oxidation rate of soot at $150^{\circ}C$.

Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Oxygenated Blending Fuel (압축착화 엔진에서 함산소 혼합연료의 연소 및 미세입자 배출물 특성)

  • Cha, June-Pyo;Yoon, Seung-Hyun;Chon, Moo-Soo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.61-66
    • /
    • 2009
  • An experimental investigation was conducted to analyze the effects of biodiesel-ethanol and biodiesel-diesel blended fuels on the characteristics of combustion and exhaust emissions, and size distributions of particulate matter in a single cylinder diesel engine. The three types of test fuel were biodiesel and two blended fuels which were added ethanol and diesel by 20 % volume based fraction into biodiesel, respectively. In this study, the injection rate, combustion pressure, exhaust emissions and size distributions of particulate matter were measured under various injection timings and injection pressures. The experimental results show that biodiesel-ethanol blended fuel has lengthened ignition delay and low combustion pressure in comparison with those of biodiesel and biodiesel-diesel blended fuel even if all fuels indicated similar trends of injection rate under equal injection pressures. In addition, the ethanol blended fuel significantly reduced nitrogen oxidies (NOx) and soot emissions. And then the size distribution of particulate matters shows that blended fuels restrain the formation of particles which were beyond the range of 150nm comparison with biodiesel fuel.

Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Biodiesel according to EGR Ratio (바이오디젤을 적용한 압축착화 엔진에서 EGR율에 따른 연소 및 미세입자 배출물 특성)

  • Cha, June-Pyo;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.98-104
    • /
    • 2010
  • An experimental investigation was conducted to analyze the effects of EGR ratio on the combustion, exhaust emissions characteristics and size distributions of particulate matter in a single cylinder diesel engine with common-rail injection system fueled with biodiesel derived from soybean. In order to analyze the combustion, exhaust emissions and measurement of size distributions of particulate matter were carried out under various EGR ratio which was varied from 20~60% and the results were compared to those of results without EGR. The experimental results show that ignition delay was extended and maximum value of rate of heat release (ROHR) was decreased according to increasing of EGR ratio. In addition, oxidies of nitrogen ($NO_x$) emissions were reduced but soot emissions were increased under increasing of EGR ratio. However, under higher EGR ratio region, soot was slightly decreased. And then the particulate size distribution shows that high exhaust gas temperature restrain the formation of soluble organic fraction (SOF) which were beyond the accumulation mode (100~300nm) and lead to increase of nuclei mode particles.

Correlation of Nonpoint Pollutant and Particulate Matters at a Small Suburban Area (비시가화지역에서 비점오염물질과 입자성물질의 유출 상관성)

  • Park, Ji-Young;Bae, Sang-Ho;Yoon, Young-H.;Lim, Hyun-Man;Park, Jae-Roh;Oh, Hyun-Je;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.720-728
    • /
    • 2012
  • In general, nonpoint pollutant of a watershed is drained out in the form of storm water runoff during rainfall events. As the bulk of the nonpoint pollutant is in adsorbed form on particulate matters, in order to understand the behavior of nonpoint pollutant it is essential to grasp the characteristics of particulate matters in rainfall runoff. Though, previous studies for the relationship between the runoff characteristics of pollutants and the size distribution of particulate matters are very rare. In this study, a small non-urbanized area (basin area of 52.8 ha) with various landuse types including paddy, dry fields and forest was selected and investigated in detail for the runoff properties of each pollutant during several rainfall events. The correlation and effects between particulate matters and nonpoint pollutant were analyzed quantitatively. As a result, the significant first flush was observed on each event and it became clear that fine particulate matters ($80{\mu}m$ or less) has contributed in the runoff process of nutrients and heavy metals. Organic matters ($BOD_5$, TOC), nutrients (TN, TP) and several heavy metals (Al, Cr, Cu, Fe, Hg and Zn) represented high correlations with SS (total), VSS, SS (d < $20{\mu}m$) and SS ($20{\mu}m$ $$\leq_-$$ d < $80{\mu}m$). On the other hand, $COD_{cr}$, Cd, Mn and Pb did not show clear correlations with the behavior of particulate matters. Therefore, we have to examine the introduction of nonpoint pollution mitigation facilities considering the facts that nonpoint pollutant runoff process has high correlation with the behavior of particulate matters and is changeable based on the target pollutants.

A Study on the Nano-particles Emission Exhausted from Diesel Passenger Vehicle According to Using Biodiesel (바이오디젤 사용에 따른 경유승용차의 나노입자 배출특성 연구)

  • Kwon, Sang-Il;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2007
  • This paper is to investigate the characteristics of exhaust emissions and nano-particle emission from diesel passenger vehicle according to using biodiesel fuel as an alternative fuel. In this work, the particulate matters (PM) of exhaust emissions in diesel engine were investigated by number of particles and mass measurement. The mass of the total PM was measured using the standard gravimetric measurement method, the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). Total PM emission was reduced $2{\sim}38%$ and number concentration was reduced $1{\sim}27%$ according to increasing blended ratio of biodiesel with diesel fuel. Total PM emission was reduced more than particle number emission because volatile particles were measured in total PM but were not measured in particle number emissions.

  • PDF