• Title/Summary/Keyword: 입상 슬러지

Search Result 45, Processing Time 0.021 seconds

Continuous Hydrogen Gas production by Immobilized Anaerobic Microorganisms (고정화 혐기성 미생물에 의한 연속적인 수소 생산)

  • 김정옥;김용환;류정용;송봉근;김인호
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2003
  • Hydrogen producing acidogenic microorganisms were self-immobilized using organic-inorganic hybrid polymer within 5 minutes. During the continuous tratment of synthetic wastewater at a hydraulic retention time of 20 hours, at 37$^{\circ}C$, pH 5.0, the self-immobillized granules were maintained in a stirred tank reactor. The black colored granules gradually became milky. Image analysis showed that the mean diameter of the milky colored granules ranged from 1.5 to 20. mm. The maximum bio-gas procuction rate was 380 ml/L/hy and the concentration of H$_2$was around 50%, while no methane was detected. Granular ECP was extracted and its content was measured to elucidate the role of the organic-inorganic hybrid polymer. Further increases of granule concentration are expected to increase the hydrogen production rate.

Formation and Characteristics of Aerobic Granular Sludge Using Polymer in Sequencing Batch Reactor (연속회분식 장치에서 응집제를 이용한 호기성 입상슬러지 생성 및 특성)

  • Lee, Bong-Seob;Choi, Seong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1143-1150
    • /
    • 2009
  • This study was carried out to investigate of aerobic granulation by using sequencing batch reactor(SBR). To make aerobic granular sludge in short period of time, we used polymer. In case of SBR, we have studied on physicochemical characteristics of particle size, settling velocity, surface charge, and specific oxygen utilization rate(SOUR) depending on aerobic particle's formation. The results of running SBR with $5.4kg{\cdot}COD/m^3{\cdot}d$ of COD loading rate and 20 days reaction time showed that aerobic particle size, settling velocity, SOUR, surface charge, polysaccharide/protein(PS/PN) ratio were 2.6 mm, 1.7 cm/s, $346mg{\cdot}O_2/g{\cdot}MLVSS{\cdot}hr,\;(-)0.26{\cdot}meq/g{\cdot}MLVSS$, and 2.06 mg/mg respectively.

Adsorption Performance of Basic Gas over Pellet-type Adsorbents Prepared from Water Treatment Sludge (정수장 슬러지로부터 제조한 입상흡착제의 염기성 가스 흡착 성능)

  • Bae, Junghyun;Park, Nayoung;Lee, Choul Ho;Park, Young-Kwon;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.352-357
    • /
    • 2013
  • In this study, the pellet-type adsorbents were prepared by extrusion using water treatment sludge. Effects of binder and calcination on physical and chemical properties of pellet-type adsorbents were investigated. The porous structure and surface characteristics of the adsorbents were studied using nitrogen adsorption, compression strength, scanning electron microscope, X-ray diffraction, and infrared spectroscopy of adsorbed pyridine. With increasing of binder content to 5 wt%, the compressive strength of pellet-type adsorbent could be improved more than three times, but the surface area reduced by 30%, and thus the breakthrough time of trimethylamine was shortened. The breakthrough time of the trimethylamine, a basic gas, could be increased more than three times through calcination, which seems to be due to generation of acid sites composed of Lewis acid and Br$\ddot{o}$nsted acid sites on the adsorbent surface.

Treatment of Corn Starch Wastewater Using an UASB Reactor (UASB 반응조를 이용한 옥수수 전분폐수의 처리)

  • Shin, Hang-Sik;Bae, Byung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.269-275
    • /
    • 1993
  • The performance of Upflow Anaerobic Sludge Blanket(UASB) reactor for treatment of corn starch wastewater was investigated using continuous and batch experiment. Results showed that the corn starch wastewater had different characteristics in terms of biodegradability and methane potential, depending on the manufacturing precess. COD removal efficiencies were maintained over 70% up to the loading rate of 3.2 kg $COD/m^3{\cdot}day$ and the maximum gas production rate was about 55 l/day, equivalent to 3.5 l/day per liter of reactor volume, at the loading rate of 8.4 kg $COD/m^3{\cdot}day$. In the anaerobic serum bottle test(SBT) carried out along with continuous operation, the sludge activity was found to increase from 0.03 to 0.53 g $COD-CH_4/g\;VSS{\cdot}day$ as granular sludges were developed in 130 days operation. SBT gave valuable informations on the characteristics of wastewaters to be treated as well as on the sludge activity. The overall morphological characteristics of granular sludges cultivated on corn starch wastewaters were similar to those cultivated on various organic industrial wastewaters such as distillery and sugar.

  • PDF

Anaerobic Treatment of Landfill Leachate Using a Upflow Anaerobic Sludge Blanket Reactor (UASB 반응조를 이용한 매립지 침출수의 혐기성 처리)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.151-160
    • /
    • 2006
  • Anaerobic treatment of landfill leachate was studied to investigate the behaviors of pollutant and the characteristics of microorganism for 10 months. The upflow anaerobic sludge blanket (UASB) reactor achieved about 90% chemical oxygen demand (COD) removal at organic loading rates(OLR) up to $20kgCOD/m^3.d$. At higher OLR ($8-20kgCOD/m^3.d$), the propionate concentration increased, indicating that converting propionate to acetate was the rate-limiting step. Nevertheless, increase in the precipitate inside and on the surface of granules as well as on the wall of the reactor resulted in operational problems. The main inorganic precipitate in the granule was calcium compound. Although specific methanogenic activity (SMA) was not affected seriously in this study, metals had to be removed prior to anaerobic treatment so as to be free from the excessive inorganic accumulation that resulted in operational problems.

  • PDF

Behaviors of Pollutants and Microorganisms in an Anaerobic Digestion of Propionate Containing High Ammonia Nitrogen Level (고농도 암모니아성 질소를 함유한 프로피온산의 혐기성 분해시 오염물질 및 미생물 거동)

  • Lee, Chae-Young;Kim, Dae-Sung;Ahn, Won-Sik;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.126-137
    • /
    • 2006
  • Behaviors of simple organic compound and granular sludge in an upflow anaerobic sludge blanket (UASB) reactor treating propionate at high ammonia nitrogen levels were investigated for 12 months. The UASB reactor achieved about 80% removal of chemical oxygen demand (COD) at ammonia nitrogen concentration up to 6000 mg-N/L. At higher concentration of ammonia nitrogen, the propionate in the effluent increased whereas the acetate was very low. At ammonia nitrogen concentration of 8000 mg-N/L, the volatile suspended solids (VSS) increased sharply due probably to the decrease of the content of extracellular polymer (ECP) although methane production was very low. The specific methanogenic activity (SMA) using formate, acetate, and propionate as substrate to granules decreased as ammonia nitrogen concentration increased. The ammonia nitrogen concentration $I^{50}$, causing 50% inhibition of SMA were 2666, 4778 and 5572 mg-N/L, respectively. The kinetic coefficients of ammonia inhibition using formate, acetate, and propionate as substrate were 3.279, 0.999 and 0.609, respectively. The SMA using formate was severely affected by ammonia nitrogen than those using acetate and propionate. This result indicated that the hydrogenotrophic methanogens was most affected by ammonia nitrogen. Granules were mainly composed of microcolonies of methanothrix-like bacteria resembling bamboo-shape, and several other microcolonies including propionate degrader with juxtapositioned syntrophic associations between the hydrogen-producing acetogens and hydrogen-consuming methanogens.

  • PDF

Lithoautotrophic Nitrogen Removal from Ammonium-rich Wastewater in Aerobic Upflow Sludge Bed(AUSB) Reactor (호기성 상향류 슬러지상 반응조를 이용한 고농도 암모늄 함유폐수의 독립영양 질소제거)

  • Ahn, Young-Ho;Choi, Hoon-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.852-859
    • /
    • 2006
  • The novel microbial process such as Anammox(anaerobic ammonium oxidation) and Canon(completely autotrophic nitrogen removal over nitrite) processes is promising biotechnology to remove nitrogen from ammonium-rich wastewater like anaerobic sludge digester liquid. In this research, a new Canon-type nitrogen removal process adopting upflow granular sludge bed type configuration was investigated on its feasibility and process performance, using synthetic wastewater and sludge digester liquids. Air as an oxygen source was provided in an external aeration chamber with flow recirculation. In the first experiment using the synthetic wastewater(up to 110 mg $NH_4$-N $L^{-1}$), the ammonium removal was about 95%(92% for T-N) at effective hydraulic retention time(HRT) for 3.8 days. In the second experiment using the sludge digester liquids($438{\pm}26$ mg $NH_4$-N $L^{-1}$), the total nitrogen removal was $94{\pm}1.7%$ at HRT for 5.4 days and $76{\pm}1.5%$ at HRT for 3.8 days, respectively. Little nitrite and nitrate were observed in the effluent of both experiments. The process revealed quite a lower oxygen($0.29{\sim}0.59$ g $O_2$ $g^{-1}N$) and less alkalinity($3.1{\sim}3.4$ g $CaCO_3$ $g^{-1}N$) consumption as compared to other new technology in microbial nitrogen removal. The process also offers the economical compact reactor configuration with excellent biomass retention, resulting in lower cost for investment and maintenance.

Characterization of Granular Fertilizer Produced by Fly Ash from a Sewage Sludge Incinerator (하수슬러지 소각 비산재를 이용한 입상비료 조립 및 특성분석)

  • Kim, Seong-beom;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.574-579
    • /
    • 2016
  • This study assessed feasibility of making granular fertilizer with fly ash from a sewage sludge incinerator in Korea. Composition, characteristics, strength, and heavy metal contents of the granular fertilizers were investigated. Due to its high contents of phosphorus, fly ash from a sewage sludge incinerator could be used to make fertilizers. Granulation rates (2-4 mm granules) over 80% could be achieved as the fly ash contents were 15% or less of the fertilizer. Leaching tests of the fertilizers, based upon the Korean Standard Methods for Solid Wastes, showed the concentrations of heavy metals less than the risk limits. However, contents analysis of the fertilizers, based upon the Korean Standard Methods for Soils, experienced higher levels of heavy metals than the risk limits as the fly ash content exceeded 7% of the fertilizer. Thus, the fly ash needs to be added less than 7% of the fertilizer if there is no pretreatment to remove heavy metals.

Ceramic Membrane Application for the Bayer Process of Aluminium hydroxide Production (수산화알루미늄 제조 Bayer 공정에서 Ceramic membrane 여과 실용화 공정 개발)

  • 김정학;이성오;구자경;남승하;이시철
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.146-148
    • /
    • 2003
  • Bayer 공정은 가성소다를 이용하여 보오크사이트로부터 수산화알루미늄을 추출하는 공정이다. 그러나 보오크사이트 추출 후 1차 침전공정에서 반응한 보오크사이트 잔사는 침전시킴으로써 깨끗한 공정액을 분리하는 데 이때 침전되지 못한 다량의 분산성 고형물이 공정액 중에 존재하게 되는데 이를 분산성 보오크사이트(레드머드) 미립자라하며 보통 80-100mg/$\ell$의 농도를 나타낸다. 그러므로 이를 제거하기 위해 다음 공정인 입상여과필터 공정을 사용하는데 이때 필터링 효율증대를 위해 보조제로써 다량의 소석회(Ca(OH)$_2$)를 투여하여 공정액 중의 고형물을 농도를 8-100mg/$\ell$에서 5mg/$\ell$로 낮추는 공정을 사용하고 있다. 특히 국내 수산화알루미능 제조회사일 KC(주)의 경우 소석회 사용량이 일 10톤, 년간 약 3,600톤을 사용함으로써 소석회의 사용량에 따라 같은 량의 슬러지가 발생되게 된다. 따라서 여과후 발생되는 슬러지의 처리비용 문제(연간 9천만원)와 소석회의 미립자에 의한 공정액의 2차 오염과 제품 품질 저하(quality claim) 및 소석회 사용량에 따른 연간 원료비(연간 3억원) 등의 상당한 문제점을 나타내고 있는 실정이다. 아울러 최근 고품위 수산화알루미늄의 공급 요구에 따라 여과시 정제기준이 점차 낮아져 이제는 1mg/$\ell$ 이하를 유지하여야 하는 근본적인 문제에 봉착해있는 실정이다. 그러므로 본 연구에서는 소석회를 사용하는 입상여과법을 대체하기 위한 신공정개발을 추진하였으며, 그동안 카트리지여과법 등의 다양한 실험 결과로부터 최근 필터 보조제를 첨가하지 않는 물리적 여과방법인 세라믹 막 여과법의 적용 가능성을 확인하고 친환경공정인 세라믹 막 여과 실용화 공정 기술을 개발하였다. 세라믹 막 여과 법은 여과 보조제를 사용하지 않으므로 2차적인 슬러지 발생등의 환경문제를 발생하지 않으며, 공정액에 첨가제를 투입하지 않으므로 순환형 친환경공정으로 각광받을 수 있다. 본 연구에서는 고온, 고농도의 NaOH 수용액의 처리에 적합한 막소재와 발생될 수 있는 제반 문제점 등을 파악하였고, 장기간의 실험을 거쳐 최적 투과 압력(Trans membrane pressue), 세정 조건 및 주기, 막재질에 있어서 보강하여야 할 Point, 최적 운전 조건들을 토출해 내었고, 향후 실제 Plant에 적용할 계획이다.

  • PDF