• Title/Summary/Keyword: 입방체

Search Result 72, Processing Time 0.014 seconds

Estimation of Stem Taper Equations and Stem Volume Table for Phyllostachys pubescens Mazel in South Korea (맹종죽의 수간곡선식 및 수간재적표 추정)

  • Eun-Ji, Bae;Yeong-Mo, Son;Jin-Taek, Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.622-629
    • /
    • 2022
  • The study aim was to derive a stem taper equation for Phyllostachys pubescens, a type of bamboo in South Korea, and to develop a stem volume table. To derive the stem taper equation, three stem taper models (Max & Burkhart, Kozak, and Lee) were used. Since bamboo stalks are hollow because of its woody characteristics, the outer and inner diameters of the tree were calculated, and connecting them enabled estimating the tree curves. The results of the three equations for estimating the outer and inner diameters led to selection of the Kozak model for determining the optimal stem taper because it had the highest fitness index and lowest error and bias. We used the Kozak model to estimate the diameter of Phyllostachys pubescens by stem height, which proved optimal, and drew the stem curve. After checking the residual degree in the stem taper equation, all residuals were distributed around "0", which proved the suitability of the equation. To calculate the stem volume of Phyllostachys pubescens, a rotating cube was created by rotating the stem curve with the outer diameter at 360°, and the volume was calculated by applying Smalian's method. The volume of Phyllostachys pubescens was calculated by deducting the inner diameter calculated volume from the outer diameter calculated volume. The volume of Phyllostachys pubescens was only 20~30% of the volume of Larix kaempferi, which is a general species. However, considering the current trees/ha of Phyllostachys pubescens and the amount of bamboo shoots generated every year, the individual tree volume was predicted to be small, but the volume/ha was not very different or perhaps more. The significance of this study is the stem taper equation and stem volume table for Phyllostachys pubescens developed for the first time in South Korea. The results are expected to be used as basic data for bamboo trading that is in increasing public and industrial demand and carbon absorption estimation.

Studies on the Durability of Mortars (모르타르의 내구성에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1604-1615
    • /
    • 1969
  • This experiment was carried out as one of the basic studies to improve the acid resistance of concrete and it was conducted to investigate some relations among physical properties such as basorption, ratio of water to cement, compressive strength, density and ratio of mix to weight losses of mortar when exposed to 0.1 N solution of hydrochrolic acid. The results obtained from the limited data secured so far in this experiment are summarized as follows: 1. The specimens used in the experiment were made of 5 cubic centimeters of mortar having such various ratios of mix by weight as 1 : 1, 1 : 3, 1 : 5, 1 : 7, 1 : 10. 2. Physical tests included compressive strengths at 7 days, 28 days, 3 months, and 6 month, and 5 hour boiling absorption test. 3. In acid test, every specimen was immersed into 0.1 N solution of hydrochrolic acid. The specimens exposed to the acid solution were weighed to determine the weight losses of the acid-corroded at one week interval for 7 weeks exposure, and the old acid solutions were also changed to fresh one when weighed the weight losses by acid attack at one week interval. 4. The correlative relations were found among physical properties and they are expressed by certain formulas as follows; i) Relation between ratio of mix and absorption Y = 1.036x + 13.53 where Y: absorption(%) X: ratio of mix ii) Relation between ratio of mix and ratio of water-cement Y = 0.204x + 0.214 where Y: ratio of water-cement. X: ratio of mix iii) Relation between ratio of water-cement and absorption Y = 5.01x + 12.53 where Y: absorption(%). X: ratio of water-cement iv) Relation between density and absorption Y = 50.6 - 0.0176X where Y: absorption(%). X: density($kg/m^3$) v) Relation between density and ratio of water cement Y = 7.2183 - 0.0033X where Y: ratio of water-cement . X: density($kg/m^3$) 5. After completing the acid exposure test the specimens were corroded and , the per cent ranges of weight losses varies from a minimum of 20.4 per cent at a 1 : 1 mix to a maximum of 92.0 per cent at a 1:10 mix 6. The correlative relations of physical properties of mortar to weight losses by acid attak were found and they are also expressed by certain formulas as follows: i) Relation between weight losses and ratio of mix Y = 8.59X + 8.63 where Y: weight losses(%), X: ratio of mix ii) Relation between wieght losses and absorption Y = 0.121x + 12.43 where Y: absorption(%). X: weight losses(%) iii) Relation between weight losses and ratio of w/c Y = 0.0226X + 0.07 where Y: ratio of w/c X: weight losses(%) iv) Relation between weight losses and compressive strength LogY = 3.6097 - 0.05058X + 0.00022$X^2$ where Y: compressive strength ($kg/cm^3$) X: weight losses(%) v) Relation between weight losses and density Y = 2153.1 - 6.62X where Y: density($kg/m^3$) X: weigh losses(%) 7. In order to make better acid resistant mortar, it could be concluded that a 1 : 3 mix or richer mixes, adequate mixing water to minnimize the ratio of water-cement considering the workability, 16 per cent or less absorption by 5 hour boiling water, 1,800 kilogram per cubic meter or denser density by absolute weight base and 200 kilogram per square meter or compressive strength at 20 day, etc are required so as to obtain acid-resistant mortar. In addition to the above, it might be recommonded to select the fine aggregate and to use better equipments such as a mechanical vibrator, a mechanical mixer etc. in concrete manufacturing works.

  • PDF