• Title/Summary/Keyword: 임피던스 연성

Search Result 12, Processing Time 0.029 seconds

Analysis of Impedance Models on Flexible PCB Transmission Line (연성 PCB 전송라인을 위한 특성 임피던스 모델의 모의 분석)

  • Part, Jong-Kang;Byun, Yong-Ki;Kim, Jong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3022-3024
    • /
    • 2005
  • 연성 PCB(flexible printed circuit board)는 현재 노트북 PC와 디지털 카메라등에 적용되며, 굴곡성이 강하고 소형화 및 조립에 용이하여 주로 기판 사이나주기판과 외부 커넥터사이에 데이터의 전송매체로써 널리 사용되는 핵심부품이다. 근래에 개발되는 PCB 기반의 고성능 신호처리회로들은 데이터 전송율이 수백 MHz에서 수 GHz에 이르고 있으며, 신호선과 유전체, 접지판의 구조적 특성에 따라서, 반사 효과와 같은 신호무결성 문제들이 파생되어 신호의 최대성능을 제한하게된다. 이에 따라 적절한 임피던스 제어를 통하여 고성능신호들의 왜곡을 상쇄시키는 기술이 중요하게 되었다. 본 논문에서는 연성 PCB 전송라인을 위한 임피던스 모델을 대상으로 각 모델의 주요 특징 및 정확성을 분석하였다. 연성 PCB의 전송라인은 보통 전통적인 마이크로스트립 라인의 특성 임피던스 모델에 비해 신호선의 너비가 크며, 이를 반영한 개선된 수학적 임피던스 모델들이 제안되어 있다. 따라서 본 논문은 기존의 마이크로스트립 전송라인과 연성 PCB 전송라인에 적합한 수학적 모델들을 이용하여 신호 무결성 문제를 모의할 수 있는 CAE(computer-aided engineering) 도구의 임피던스 측정 결과를 비교 및 분석하였다.

  • PDF

Vibration Analysis for Infinite Length Waveguide Structures Connected with Finite Length Structures Using Impedance Coupling (유한 길이 구조물과 무한 길이 도파관 구조물의 임피던스 연성을 이용한 진동 해석)

  • Ryue, Jungsoo;Lee, Jaehong;Hong, Chinsuk;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.360-370
    • /
    • 2015
  • In case that an infinite length waveguide structure is connected with a finite length structure, it is required to combine a wave approach for the waveguide structure and a modal approach for the finite length structure to investigate the dynamic response of the connected target structure. In this study, the wavenumber finite element (WFE) analysis is adopted for the infinite length waveguide substructure and a finite element (FE) method is applied for the finite length substructure and then their results are coupled in terms of the impedance or mobility at the connected points between the substructures. As a structural model, an infinite length cylindrical shell with a rectangular plate inside is regarded. These two substructures are connected at the four corner points of the plate, rigidly or resiliently. From this investigation, it was confirmed that the wave approach (WFE method) and modal approach (FE method) can be combined by the impedance coupling.

On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices (압전 진동 에너지 수확 장치의 에너지 변환 효율에 대한 고찰)

  • Kim, Jae Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

Underwater Structure-Borne Noise Analysis Using Finite Element/Boundary Element Coupled Approach (유한요소/경계요소 연성해석을 통한 수중 구조기인소음 해석)

  • Lee, Doo-Ho;Kim, Hyun-Sil;Kim, Bong-Ki;Lee, Seong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.789-796
    • /
    • 2012
  • Radiated noise analysis from a ship structure is a challenging topic owing to difficulties in the accurate calculation of the fluid-structure interaction as well as owing to a massive degree of freedom of the problem. To reduce the severity of the problem, a new fluid-structure interaction formulation is proposed in this paper. The complex frequency-dependent added mass and damping matrices are calculated using the high-order Burton-Miller boundary integral equation formulation to obtain accurate values over all frequency bands. The calculated fluid-structure interaction effects are added to the structural matrices calculated by commercial finite element software, MSC/NASTRAN. Then, the impedance and underwater radiation noise due to an excitation of structure are calculated. The present formulation is applied to a ship to calculate the underwater radiated noise.

A Mathematical Formulation of the Structural-acoustic System with an Opening and a Flexible Structure (입구와 유연한 구조물로 구성된 경계를 가지는 구조-음향 연성계의 수학적 표현)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.527-535
    • /
    • 2005
  • This paper explains a general coupling system in terms of the system parameters. impedance of a cavity or mobility of a structure. To easily access the mechanism of the structural-acoustic coupled system, a simple expression is derived. A general coupled equation is also derived of a general coupled problem constituted a flexible structure and an opening boundary in terms of vector and matrix notation, and is analyzed the coupling phenomena using the understanding acquired simple coupled system. The paper shows that the general coupled equation is expanded version of the simple coupled equation by some limiting checks. The paper also shows that the degree of coupling is proportioned to a stiffness of the acoustic system and a modal coupling coefficient, but is in inverse proportion to a mass of the structural system and the difference of the excitation frequency and resonant frequency of the acoustic or structural system.

The Effects of the Boundary Shapes on the Structural-acoustic Coupled System (다양한 경계 형상에 따른 구조-음향 연성계의 음향특성)

  • 김양한;서희선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.718-725
    • /
    • 2004
  • If a wall separates the bounded and unbounded spaces, then the wall’s role in transporting the acoustic characteristics of the two spaces is not well defined. In this paper, we attempted to see how the acoustic characteristics of two spaces are really affected by the spatial characteristics of the wall. In order to understand coupling mechanism, we choose a finite space and a semi-infinite space separated by the flexible or rigid wall and an opening. A volume interaction can be occurred in structure boundary and a pressure Interaction can be happened in the opening boundary. For its simplicity, without loosing generality, we use rather simplified rectangle model instead of generally shaped model. The source impedance is presented to the various types of boundaries. The distributions of pressure and active intensity are also presented at the cavity- and structure-dominated modes. The resulting modification, shifts of modal frequencies and changing of standing wave patterns to satisfy both coupled boundary conditions and governing equations, are presented.

An Analysis of the Sound Transmission through a Plate Installed inside an Impedance Tube (임피던스 튜브 내에 설치된 평판의 음파투과해석)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • In this paper, derivation of the STL (Sound Transmission Loss) of a square plate installed in an impedance tube is discussed using an analytic method. Coupled motion of the plate vibration and acoustic field is considered. Vibration of the plate and pressure field inside the tube are expressed in terms of the infinite series of modal functions. Under the plane wave assumption, it is shown that consideration of the first few modes yields sufficiently accurate results. When the boundary of the plate is clamped, vibration mode is assumed as a multiplication of the beam modes corresponding to the crosswise directions. The natural frequencies of the clamped plate are calculated using the Rayleigh-Ritz method. It is found that the STL shows a dip at the lowest natural frequency of the plate, and increases as the frequency decreases below the natural frequency. Comparison of the result in this paper with the STL obtained by measurements and FE computations in the reference shows an excellent agreement.

A Parameter Study on the Frequency Characteristics of the Structural-acoustic Coupled System (구조-음향 연성계의 경계값 변화에 따른 방사음 변화)

  • 김양한;서희선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.604-611
    • /
    • 2004
  • It is well known that wall impedance essentially determines how sound wave transmits from one place to another. The wall impedance is related with its dynamic properties : for example, the mass, stiffness, and damping characteristics. It is noteworthy, however, that the wall impedance is also function of spatial characteristics of two spaces that is separated by the wall. This is often referred that the wall is not locally reacting. In this paper, we have attempted to see how the acoustic characteristics of the two spaces is affected by various structure parameters such as density, applied tension, and a normalized length of the wall. Calculations are conducted for two different modally reacting boundary conditions by modal expansion method. The variation of the Helmholtz mode and the structural-dominated mode are analyzed as the structure parameters vary. The displacement distribution of the structure, pressure and active intensity of the inside and outside cavity are presented at the Helmholtz mode and the structure-dominated mode. It is shown that the frequency characteristics are governed by both structure-and fluid-dominated mode. The results exhibit that the density of the structure is the most sensitive design parameter on the frequency characteristics for the coupling system as we could imagine in the beginning. The Helmholtz mode frequency decrease as density increases. However. it increases as applied tension and an opening size increase. The bandwidth of the Helmholtz mode is mainly affected by density of the structure and its opening size.

An Investigation of Power Flow Mechanism in Beam-plate Built-up Structures with an Energy-absorbing Plate (보-판 결합 구조물에서 에너지 흡수체로 작용하는 판의 특성에 따른 파워 전달 특성에 관한 연구)

  • Yoo, Ji-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.55-64
    • /
    • 2007
  • In the built-up structure consisting of a stiff beam and a flexible plate, Grice showed that the plate behaves as an energy absorber in narrow frequency bands(called plate blocking effect). This paper deals with such beam-plate coupled structures, where the plate is an energy absorber and the excited beam is an energy path. It is found that such energy dissipation can occur in the relatively broad bands, if different stiffnesses are used in the rectangular plate. It was experimentally verified by Heckl that the energies in terms of one-third octave band averages transferred to the plate(or dissipated in the plate) increase for increased plate damping. This Paper, however, shows that the energy absorption suddenly reduces at the certain narrow frequency bands where the plate damping effect upon the coupled beam is maximum. Also, in order to minimize energy transfer through the beam in terms of one-third octave band averages, it is advantageous to increase the plate damping closer to the excitation point All these results are based on the wane method.

A Study on the ASK Communication Modem over Electrical Power Lines (전력선을 이용한 ASK통신 모뎀에 관한 연구)

  • 사공석진;송문규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.9
    • /
    • pp.951-962
    • /
    • 1992
  • The layout of electrical power distribution networks never involved communications aspects. As a result their transmission properties severly complicate the use as data links. Futhermore bandwidth as well as transmission power is restricted. Nevertheless, power distribution net works represent a most attractive medium for digital communication purposes due to an ever increasing demand, e.g., for environment management of buildings, office automation, and remote meter reading or security monitoring. In this paper, a power line modem which is capable of transmitting and receiving data at 1200 bps using OOK-BASK through 220V AC power lines is implemented. The receiver includes noncoherent detector and performs soft decision. The OLM circuits can be simplified by use of microprocessor. The PLM also satisfies CENELEC, European standards, and can be applied to home automation system.

  • PDF