• Title/Summary/Keyword: 임플란트지지 고정성 보철물

Search Result 93, Processing Time 0.019 seconds

Occlusal rehabilitation of post-traumatic malocclusion patient after reduction of panfacial fracture, using selective occlusal adjustment and implant prostheses on centric relation: a case report (다발성 안면 골절의 정복 후 발생한 부정교합 상태의 환자를 중심위에서 선택적 교합 조정 및 임플란트 보철수복으로 교합관계를 회복시킨 증례)

  • Dae-Kyun Kim;So-Young Park;Jung-Jin Lee;Yeon-Hee Park;Kyoung-A Kim;Jae-Min Seo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.204-213
    • /
    • 2023
  • Invasive or non-invasive reduction of fractures could be conducted as treatments of traumatic maxillofacial bone fractures. But when suboptimal reduction or malunion of maxillofacial bone fracture occurs, malocclusion could occur as a result of the lost relationship of the mandible and midface. This malocclusion is called post-traumatic malocclusion and orthognathic surgery, orthodontic treatment, selective grinding and prosthetic reconstruction are suggested as treatments for post-traumatic malocclusion after securement of stable TMJ. Stable TMJ is essential for occlusal rehabilitation to prevent occlusal change and relapse of malocclusion. Centric relation and adapted centric posture are suggested as start points of occlusal rehabilitation because they are most stable TMJ position. This case report presents a case in which post-traumatic malocclusion occurred after reduction of panfacial fracture. To rehabilitate full mouth occlusion, selective grinding and prosthetic reconstruction of implant supported fixed prostheses were conducted in centric relation and showed satisfying results in functional and occlusal aspects.

An Esthetic Restoration of the Missing Maxillary Anterior Teeth with the Rotational Path RPD: A Case Report (회전삽입로 국소의치를 이용한 심미적 상악 전치부 수복 증례)

  • Lee, Ji-Hye;Lim, So-Min;Jung, Hye-Eun;Park, Chan-Jin;Cho, Lee-Ra;Kim, Dae-Gon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.209-222
    • /
    • 2011
  • Missing anterior teeth can be replaced using any of a number of methods. Patients may choose to replace missing teeth with a prosthesis that is either removable, fixed, or retained with implants. For patients faced with financial, anatomical, and/or esthetic limitations, the edentulous region can be restored successfully and esthetically with a properly designed and fabricated rotational path RPD. The rotational path RPD is a partial removable dental prosthesis that incorporates a curved, arcuate, or variable path of placement allowing one or more of the rigid components of the framework to gain access to and engage an undercut area. The rigid retainer must gain access to the infrabulge portion of the tooth by rotating into place. Either a minor connector or proximal plate provides retention through its intimate contact with a proximal tooth surface. A specially designed dovetails or asymmetric rest seats provides support and embracing effects. Correctly designed and fabricated rotational path RPD can provide improved esthetics, cleanliness, and retention. But rotational path RPDs are technique sensitive since the rotational path RPD has little margin of laboratory error that rigid retainers cannot be adjusted like conventional clasps can, RPD framework must be remade once the retention is lost. The sufficient understanding of the concept for the rotational path RPD is required for clinically successful treatment. This clinical report describes in detail the theoretical, laboratory considerations and the treatment of a patient with an anterior maxillary edentulous area treated by an AP path rotational RPD that had a difficulty in long term maintenance and describes another clinical case in which more reasonable treatment procedures were approached after analyzing the former case.

A Study on the Stress Distribution of Condylar Region and Edentulous Mandible with Implant-Supported Cantilever Fixed Prostheses by using 3-Dimensional Finite Element Method (임플란트 지지 캔틸레버 고정성 보철물 장착시 과두와 하악골의 응력 분포에 관한 3차원 유한요소법적 연구)

  • Kim, Yeon-Soo;Lee, Sung-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.283-305
    • /
    • 2001
  • The purpose of this study was to analyze the stress distribution of condylar regions and edentulous mandible with implant-supported cantilever prostheses on the certain conditions, such as amount of load, location of load, direction of load, fixation or non-fixation on the condylar regions. Three dimensional finite element analysis was used for this study. FEM model was created by using commercial software, ANSYS(Swanson, Inc., U.S.A.). Fixed model which was fixed on the condylar regions was modeled with 74323 elements and 15387 nodes and spring model which was sprung on the condylar regions was modeled with 75020 elements and 15887 nodes. Six Br${\aa}$nemark implants with 3.75 mm diameter and 13 mm length were incorporated in the models. The placement was 4.4 mm from the midline for the first implant; the other two in each quardrant were 6.5 mm apart. The stress distribution on each model through the designed mandible was evaluated under 500N vertical load, 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. The load points were at 0 mm, 10 mm, 20 mm along the cantilever prostheses from the center of the distal fixture. The results were as follows; 1. The stress distribution of condylar regions between two models showed conspicuous differences. Fixed model showed conspicuous stress concentration on the condylar regions than spring model under vertical load only. On the other hand, spring model showed conspicuous stress concentration on the condylar regions than fixed model under 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. 2. Fixed model showed stress concentration on the posterior and mesial side of working and balancing condylar necks but spring model showed stress concentration on the posterior and mesial side of working condylar neck and the posterior and lateral side of balancing condylar neck under vertical load. 3. Fixed model showed stress concentration on the posterior and lateral side of working condylar neck and the anterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior sides of working and balancing condylar necks under horizontal load linguobuccally. 4. Fixed model showed stress concentration on the posterior side of working condylar neck and the posterior and lateral side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 20 degree oblique load. 5. Fixed model showed stress concentration on the anterior and lateral side of working condylar neck and the posterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 45 degree oblique load.. 6. The stress distribution of bone around implants between two models revealed difference slightly. In general, magnitude of Von Mises stress was the greatest at the bone around the most distal implant and the progressive decrease more and more mesially. Under vertical load, the stress values were similar between implant neck and superstructure vertically, besides the greatest on the distal side horizontally. 7. Under horizontal load linguobuccally, buccal 20 degree oblique load and buccal 45 degree oblique load, the stress values were the greatest on the implant neck vertically, and great on the labial and lingual sides horizontally. After all, it was considered that spring model was an indispensable condition for the comprehension of the stress distributions of condylar regions.

  • PDF