• 제목/요약/키워드: 임펠러(impeller)

검색결과 389건 처리시간 0.027초

원심블로어 임펠러 토출 날개 형상에 따른 성능특성 (Performance Characteristics according to the Outlet Impeller Blade Shape of a Centrifugal Blower)

  • 이종성;전현준;장춘만
    • 한국유체기계학회 논문집
    • /
    • 제16권6호
    • /
    • pp.12-18
    • /
    • 2013
  • This paper presents the performance characteristics of a centrifugal blower using the design parameters of an impeller blade. Two design variables, the bending length from the blade trailing edge and bending angles of an impeller blade, are introduced to analyze the effects on the blower performance. Three-dimensional Navier-Stokes equations with shear stress transport turbulence model are introduced to analyze the performance and internal flow of the blower. Relatively good agreement between experimental measurements and numerical simulation at the design flow condition is obtained. Throughout present study, it is known that pressure increases as the bending length from the trailing edge and bending angle increase while efficiency decreases. But efficiency is decreased. Detailed flow field inside the centrifugal blower is also analyzed and compared.

횡류팬의 최적설계방안 (Optimum Design of a Cross Flow Fan)

  • 김동훈;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.176-181
    • /
    • 2003
  • The cross-flow fans are widely used in various applications, due to their large capacity of mass flow and the size compactness. The flow fields of the cross-flow fan is, however, complex and it has many design parameters. Thus the general design guide has not sufficiently established yet, and the design strategies of cross-flow fans have been based on experiments. In the present study, the cross-flow fan performance and its two-dimensional flow characteristics are numerically analyzed by using the STAR-CD. The simulation is done by varying the several design parameters such as impeller blade shapes, the gap between the stabilizer and impeller. The computational results are compared with the experimental data at the fan outlet region. Finally some helpful guides for the optimum design of the cross-flow fan are proposed.

  • PDF

2차원 원심 압축기의 깃 없는 디퓨저에서의 불안정 유동 (Unstable Flow in a Vaneless Diffuser of 2-Dimensional Centrifugal Compressor)

  • 강경준;신유환;김광호;이윤표
    • 한국유체기계학회 논문집
    • /
    • 제14권4호
    • /
    • pp.5-11
    • /
    • 2011
  • This study investigated on details of flow characteristics in a vaneless diffuser of a compressor with 2-dimensional impeller at various flow rates. Experiment for a low speed compressor model in a water reservoir was performed to analyze the flow field in the vaneless diffuser and volute casing, which was done by PIV measurement. It was also focused on the periodic flow patterns occurring at low flow rate near unstable operating region of the compressor. At low flow rate condition, the flow visualization clearly shows that the flow energy from impeller is highly accumulated at the compressor exit by the blockage effect of a flow damper and consequently the reverse flow occurs in the diffuser.

토크 컨버터용 임펠러 허브의 냉간단조공정설계 (Design of a Impeller Hub Cold Forging Process)

  • 김영석;김현수;김찬일;최석탁
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.213-219
    • /
    • 2000
  • A impeller hub is usually made through three forging processes : forward extrustion, upsetting and finishing. The finishing process is closed die forging in which the load increases abruptly at the final stage, resulting in underfilling in the finished product due to insufficient load capacity of the press. In this study, the rigid-plastic finite element analysis was applied to the impeller hub forging process in order to optimize process and to estimate required load. As a result, two kind of improvements for the process were suggested to reduce the load requirement in the finishing process.

  • PDF

워터제트의 임펠러 입구와 출구 각도에 따른 성능해석 (Performance Analysis based on Impller Inlet & Outlet Angle for Waterjet)

  • 강민규;박동진;강한빈;이석순
    • 항공우주시스템공학회지
    • /
    • 제5권2호
    • /
    • pp.27-32
    • /
    • 2011
  • The purpose of this study was to suggest 10 kinds of case and perform Mixed-flow pump optimum design and performance analysis depending on the shape of the impeller for suitable to water jet propulsion system. H20 was applied to the material properties, to analysis conditions for water jet axial impeller 1000 rpm given analysis was performed. Interpretation for each case as a result of speed, pressure, flow rate, calculate the thrust at the Inlet Angle $30^{\circ}$ and Outlet Angle $30^{\circ}$ could see a persistence of optimal performance.

Flank Milling 공법적용을 위한 자동차용 터보차져 임펠러의 설계체험 (DESIGNING EXPERIENCE OF AUTOMOTIVE TURBOCHARGER IMPELLER FOR FLANK MILLING)

  • 방중철
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.1-8
    • /
    • 2013
  • The performance of small-size impellers with ruled surfaces was investigated for flank milling over a wide speed range, using computational fluid dynamics analyses and gas bench tests. An impeller with a ruled surface was designed, manufactured, and tested to evaluate the effects of blade loading, the backsweep angle, and the relative velocity distribution on the compressor performance. The simulations and tests were completed using the same compressor cover with identical inlet and outlet channels to accurately compare the performance of the abovementioned impeller with a commercial impeller containing sculptured blades. Both impellers have the same number of blades, number of splitters, and shroud meridional profiles. The backsweep angles of the blades on the ruled impeller were selected to work with the same pinched diffuser as for a sculptured impeller. The inlet-to-exit relative velocity diffusion ratio and the blade loading were provided to maximize the flow rate and to minimize the surge flow rate. The design flow rate, rpm, were selected same for both impellers. Test results showed that for the compressor stage with a ruled impeller, the efficiency was increased by 0.32% with an extended surge margin without a reduction in the pressure ratio as compared to the impeller with the sculptured design. It was concluded that an increased relative velocity diffusion coupled with a large backsweep angle was an effective way to improve the compressor stage efficiency. Additionally, an appropriate blade loading distribution was important for achieving a wide operating range and higher efficiency.

소형 원심 압축기의 성능 향상을 위한 베인 없는 디퓨저와 볼류트 케이싱의 설계에 관한 연구 (A study on the vaneless diffuser and volute casing design for the improvement of small centrifugal compressors)

  • 조재필;백승윤;김성돈;안규복
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.3722-3730
    • /
    • 2015
  • 하수 처리용으로 사용되는 소형 원심 압축기의 베인 없는 디퓨져와 볼류트 케이싱의 성능 개선을 수행하였다. 기존의 두 모델은 임펠러가 동일하나, 베인 없는 디퓨져의 폭과 길이 및 볼류트 케이싱의 형상은 서로 다르다. 기존 모델에 대한 실험과 유동해석 결과를 바탕으로 베인 없는 디퓨져와 볼류트 케이싱의 설계를 변경하였다. 세 모델에 대한 연구 결과로부터, 볼류트 케이싱의 단면적 및 입구 반경 길이는 볼류트 혀와 베인 없는 디퓨져 및 임펠러와의 상호작용 강도에 영향을 주었고, 시스템 손실량에 변화를 나타내었다. 베인 없는 디퓨져 폭이 감소하면 임펠러의 효율은 증가했지만 디퓨져에서의 손실도 증가하였다. 결과적으로 개선된 모델의 효율이 설계 점에서 기존 대비 약 2.88%p 향상된 것이 유동해석 결과로 확인되었다.

임펠러의 유로 면적비가 2차원 원심압축기의 성능에 미치는 영향 (Effect of the Passage Area Ratio of an Impeller on the Performance of Two-Dimensional Centrifugal Compressors)

  • 박한영;신유환;최항철;김광호;정진택
    • 한국유체기계학회 논문집
    • /
    • 제11권5호
    • /
    • pp.22-29
    • /
    • 2008
  • This study is performed to understand the effect of the variation in the passage area of a two-dimensional impeller on its performance characteristics. We observe the results with changing the area ratio of inlet to outlet about $1{\sim}2.8$. A comparison between the experimental and numerical results was performed for the same configuration in order to verify the reliability of the CFD code. Overall characteristics in the passages of impeller were analyzed in detail including streamline, Mach number, pressure and polytropic efficiency distribution. When the passage area ratio exceeds 2, the pressure ratio is high. An area ratio of 2.3 showed the highest efficiency. The results will be used as useful reference data to establish the design concept of two-dimensional impeller and to improve its performance.

피니싱 툴 유니트의 에어 임펠러 설계에 관한 연구 (A Study on the Design for the Air Impeller of a Finishing Tool Unit)

  • 최현진;강익수;이승용;장은실;박선명;최성대
    • 한국CDE학회논문집
    • /
    • 제20권3호
    • /
    • pp.312-319
    • /
    • 2015
  • The grinding and furbishing process as the finishing process for molds include the works such as the grinding, buffing, lapping and polishing among others. A finishing tool unit is applied to this finishing process for the burr, lapping, polishing and others of molds. A finishing tool unit can carry out the flexible machining, depending on the machining allowance for objects to be cut on the basis of the instrumental driving mechanism which enables the up, down, left and right floating, which is applied in link with the dedicated cutters and robot machining systems. This study selected the shape to increase the rotatory force of an impeller when air is discharged during the driving of a finishing tool unit, and reflected it to the impeller designing. In addition, the study analyzed each flow velocity and pressure distribution per air pressurization value and finally analyzed the rotating torque to suggest the optimal conditions in designing impellers.

팁 간극 영향으로 인한 원심 압축기 성능특성 시험연구 (Experimental Study on the Effect of Tip Clearance of a Centrifugal Compressor)

  • 차봉준;임병준;양수석;이대성
    • 한국유체기계학회 논문집
    • /
    • 제4권1호
    • /
    • pp.30-37
    • /
    • 2001
  • The experimental study on the effect of axial clearance between the tip of impeller blades and stationary shroud has been performed. The investigated compressor, which is a part of a small auxiliary power unit engine, consists of a curved inlet, a centrifugal impeller, a channel diffuser and a plenum chamber. It was designed for a total pressure ratio of 4.3 and an efficiency of $77\%$ at design speed of 60,000 rpm. The experiments are carried out in an open-loop centrifugal compressor test rig driven by a turbine. For the four different clearance ratios Cr(clearance/impeller tip width) of 6.25, 10.93, 15.60 and 20.30 percent, the overall performance data are obtained at $97\%,\;90\%$ and $80\%$ of the design speed. The results show the overall pressure ratio decrease of $7.7\%$ and the efficiency loss of $8.7\%$ across the variation of clearance ratio near the design speed. It also indicates that the influence of tip clearance became weaker as the flow rate is reduced and the stable operating range is not significantly influenced by the change of clearance ratio.

  • PDF