• Title/Summary/Keyword: 임베딩 모델

Search Result 253, Processing Time 0.021 seconds

LSTM-based Model for Effective Sensor Filtering in Sensor Registry System (센서 레지스트리 시스템에서 효율적인 센서 필터링을 위한 LSTM 기반 모델)

  • Chen, Haotian;Jung, Hyunjun;Lee, Sukhoon;On, Byung-Won;Jeong, Dongwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.12-14
    • /
    • 2021
  • A sensor registry system (SRS) provides semantic metadata about a sensor based on location information of a mobile device in order to solve a problem of interoperability between a sensor and a device. However, if the GPS of the mobile device is incorrectly received, the SRS receives incorrect sensor information and has a problem in that it cannot connect with the sensor. This paper proposes a dual collaboration strategy based on geographical embedding and LSTM-based path prediction to improve the probability of successful requests between mobile devices and sensors to address this problem and evaluate with the Monte Carlo approach. Through experiments, it was shown that the proposed method can compensate for location abnormalities and is an effective multicasting mechanism.

  • PDF

Cross-Domain Recommendation based on K-Means Clustering and Transformer (K-means 클러스터링과 트랜스포머 기반의 교차 도메인 추천)

  • Tae-Hoon Kim;Young-Gon Kim;Jeong-Min Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 2023
  • Cross-domain recommendation is a method that shares related user information data and item data in different domains. It is mainly used in online shopping malls with many users or multimedia service contents, such as YouTube or Netflix. Through K-means clustering, embeddings are created by performing clustering based on user data and ratings. After learning the result through a transformer network, user satisfaction is predicted. Then, items suitable for the user are recommended using a transformer-based recommendation model. Through this study, it was shown through experiments that recommendations can predict cold-start problems at a lesser time cost and increase user satisfaction.

Development and Validation of the Letter-unit based Korean Sentimental Analysis Model Using Convolution Neural Network (회선 신경망을 활용한 자모 단위 한국형 감성 분석 모델 개발 및 검증)

  • Sung, Wonkyung;An, Jaeyoung;Lee, Choong C.
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.1
    • /
    • pp.13-33
    • /
    • 2020
  • This study proposes a Korean sentimental analysis algorithm that utilizes a letter-unit embedding and convolutional neural networks. Sentimental analysis is a natural language processing technique for subjective data analysis, such as a person's attitude, opinion, and propensity, as shown in the text. Recently, Korean sentimental analysis research has been steadily increased. However, it has failed to use a general-purpose sentimental dictionary and has built-up and used its own sentimental dictionary in each field. The problem with this phenomenon is that it does not conform to the characteristics of Korean. In this study, we have developed a model for analyzing emotions by producing syllable vectors based on the onset, peak, and coda, excluding morphology analysis during the emotional analysis procedure. As a result, we were able to minimize the problem of word learning and the problem of unregistered words, and the accuracy of the model was 88%. The model is less influenced by the unstructured nature of the input data and allows for polarized classification according to the context of the text. We hope that through this developed model will be easier for non-experts who wish to perform Korean sentimental analysis.

COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech (품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지)

  • Jihyeok Kim;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.267-283
    • /
    • 2023
  • The COVID-19 pandemic, which began in December 2019 and continues to this day, has left the public needing information to help them cope with the pandemic. However, COVID-19-related fake news on social media seriously threatens the public's health. In particular, if fake news related to COVID-19 is massively spread with similar content, the time required for verification to determine whether it is genuine or fake will be prolonged, posing a severe threat to our society. In response, academics have been actively researching intelligent models that can quickly detect COVID-19-related fake news. Still, the data used in most of the existing studies are in English, and studies on Korean fake news detection are scarce. In this study, we collect data on COVID-19-related fake news written in Korean that is spread on social media and propose an intelligent fake news detection model using it. The proposed model utilizes the frequency information of parts of speech, one of the linguistic characteristics, to improve the prediction performance of the fake news detection model based on Doc2Vec, a document embedding technique mainly used in prior studies. The empirical analysis shows that the proposed model can more accurately identify Korean COVID-19-related fake news by increasing the recall and F1 score compared to the comparison model.

A Study of Research on Methods of Automated Biomedical Document Classification using Topic Modeling and Deep Learning (토픽모델링과 딥 러닝을 활용한 생의학 문헌 자동 분류 기법 연구)

  • Yuk, JeeHee;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.63-88
    • /
    • 2018
  • This research evaluated differences of classification performance for feature selection methods using LDA topic model and Doc2Vec which is based on word embedding using deep learning, feature corpus sizes and classification algorithms. In addition to find the feature corpus with high performance of classification, an experiment was conducted using feature corpus was composed differently according to the location of the document and by adjusting the size of the feature corpus. Conclusionally, in the experiments using deep learning evaluate training frequency and specifically considered information for context inference. This study constructed biomedical document dataset, Disease-35083 which consisted biomedical scholarly documents provided by PMC and categorized by the disease category. Throughout the study this research verifies which type and size of feature corpus produces the highest performance and, also suggests some feature corpus which carry an extensibility to specific feature by displaying efficiency during the training time. Additionally, this research compares the differences between deep learning and existing method and suggests an appropriate method by classification environment.

Inverse Document Frequency-Based Word Embedding of Unseen Words for Question Answering Systems (질의응답 시스템에서 처음 보는 단어의 역문헌빈도 기반 단어 임베딩 기법)

  • Lee, Wooin;Song, Gwangho;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.902-909
    • /
    • 2016
  • Question answering system (QA system) is a system that finds an actual answer to the question posed by a user, whereas a typical search engine would only find the links to the relevant documents. Recent works related to the open domain QA systems are receiving much attention in the fields of natural language processing, artificial intelligence, and data mining. However, the prior works on QA systems simply replace all words that are not in the training data with a single token, even though such unseen words are likely to play crucial roles in differentiating the candidate answers from the actual answers. In this paper, we propose a method to compute vectors of such unseen words by taking into account the context in which the words have occurred. Next, we also propose a model which utilizes inverse document frequencies (IDF) to efficiently process unseen words by expanding the system's vocabulary. Finally, we validate that the proposed method and model improve the performance of a QA system through experiments.

A Musical Symbol recognition By Using Graphical Distance Measures (그래프간 유사도 측정에 의한 음악 기호 인식)

  • Jun, Jung-Woo;Jang, Kyung-Shik;Heo, Gyeong-Yong;Kim, Jai-Hie
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 1996
  • In most pattern recognition and image understanding applications, images are degraded by noise and other distortions. Therefore, it is more relevant to decide how similar two objects are rather than to decide whether the two are exactly the same. In this paper, we propose a method for recognizing degraded symbols using a distance measure between two graphs representing the symbols. a symbol is represented as a graph consisting of nodes and edges based on the run graph concept. The graph is then transformed into a reference model graph with production rule containing the embedding transform. The symbols are recognized by using the distance measure which is estimated by using the number of production rules used and the structural homomorphism between a transformed graph and a model graph. the proposed approach is applies to the recognition of non-note musical symbols and the result are given.

  • PDF

A Study on the Improvement Model of Document Retrieval Efficiency of Tax Judgment (조세심판 문서 검색 효율 향상 모델에 관한 연구)

  • Lee, Hoo-Young;Park, Koo-Rack;Kim, Dong-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.41-47
    • /
    • 2019
  • It is very important to search for and obtain an example of a similar judgment in case of court judgment. The existing judge's document search uses a method of searching through key-words entered by the user. However, if it is necessary to input an accurate keyword and the keyword is unknown, it is impossible to search for the necessary document. In addition, the detected document may have different contents. In this paper, we want to improve the effectiveness of the method of vectorizing a document into a three-dimensional space, calculating cosine similarity, and searching close documents in order to search an accurate judge's example. Therefore, after analyzing the similarity of words used in the judge's example, a method is provided for extracting the mode and inserting it into the text of the text, thereby providing a method for improving the cosine similarity of the document to be retrieved. It is hoped that users will be able to provide a fast, accurate search trying to find an example of a tax-related judge through the proposed model.

Legal search method using S-BERT

  • Park, Gil-sik;Kim, Jun-tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.57-66
    • /
    • 2022
  • In this paper, we propose a legal document search method that uses the Sentence-BERT model. The general public who wants to use the legal search service has difficulty searching for relevant precedents due to a lack of understanding of legal terms and structures. In addition, the existing keyword and text mining-based legal search methods have their limits in yielding quality search results for two reasons: they lack information on the context of the judgment, and they fail to discern homonyms and polysemies. As a result, the accuracy of the legal document search results is often unsatisfactory or skeptical. To this end, This paper aims to improve the efficacy of the general public's legal search in the Supreme Court precedent and Legal Aid Counseling case database. The Sentence-BERT model embeds contextual information on precedents and counseling data, which better preserves the integrity of relevant meaning in phrases or sentences. Our initial research has shown that the Sentence-BERT search method yields higher accuracy than the Doc2Vec or TF-IDF search methods.

Approximate Top-k Labeled Subgraph Matching Scheme Based on Word Embedding (워드 임베딩 기반 근사 Top-k 레이블 서브그래프 매칭 기법)

  • Choi, Do-Jin;Oh, Young-Ho;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.33-43
    • /
    • 2022
  • Labeled graphs are used to represent entities, their relationships, and their structures in real data such as knowledge graphs and protein interactions. With the rapid development of IT and the explosive increase in data, there has been a need for a subgraph matching technology to provide information that the user is interested in. In this paper, we propose an approximate Top-k labeled subgraph matching scheme that considers the semantic similarity of labels and the difference in graph structure. The proposed scheme utilizes a learning model using FastText in order to consider the semantic similarity of a label. In addition, the label similarity graph(LSG) is used for approximate subgraph matching by calculating similarity values between labels in advance. Through the LSG, we can resolve the limitations of the existing schemes that subgraph expansion is possible only if the labels match exactly. It supports structural similarity for a query graph by performing searches up to 2-hop. Based on the similarity value, we provide k subgraph matching results. We conduct various performance evaluations in order to show the superiority of the proposed scheme.