• Title/Summary/Keyword: 임베딩 모델

Search Result 253, Processing Time 0.022 seconds

Supervised Learning for Sentence Embedding Model using BERT (BERT를 이용한 지도학습 기반 문장 임베딩 모델)

  • Choi, Gihyeon;Kim, Sihyung;Kim, Harksoo;Kim, Kwanwoo;An, Jaeyoung;Choi, Doojin
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.225-228
    • /
    • 2019
  • 문장 임베딩은 문장의 의미를 잘 표현 할 수 있도록 해당 문장을 벡터화 하는 작업을 말한다. 문장 단위 입력을 사용하는 자연언어처리 작업에서 문장 임베딩은 매우 중요한 부분을 차지한다. 두 문장 사이의 의미관계를 추론하는 자연어 추론 작업을 통하여 학습한 문장 임베딩 모델이 기존의 비지도 학습 기반 문장 임베딩 모델 보다 높은 성능을 보이고 있다. 따라서 본 논문에서는 문장 임베딩 성능을 높이기 위하여 사전 학습된 BERT 모델을 이용한 문장 임베딩 기반 자연어 추론 모델을 제안한다. 문장 임베딩에 대한 성능 척도로 자연어 추론 성능을 사용하였으며 SNLI(Standford Natural Language Inference) 말뭉치를 사용하여 실험한 결과 제안 모델은 0.8603의 정확도를 보였다.

  • PDF

CNN-based Distant Supervision Relation Extraction Model with Multi-sense Word Embedding (다중-어의 단어 임베딩을 적용한 CNN 기반 원격 지도 학습 관계 추출 모델)

  • Nam, Sangha;Han, Kijong;Kim, Eun-Kyung;Gwon, Seong-Gu;Jeong, Yu-Seong;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.137-142
    • /
    • 2017
  • 원격 지도 학습은 자동으로 매우 큰 코퍼스와 지식베이스 간의 주석 데이터를 생성하여 기계 학습에 필요한 학습 데이터를 사람의 손을 빌리지 않고 저렴한 비용으로 만들 수 있어, 많은 연구들이 관계 추출 문제를 해결하기 위해 원격 지도 학습 방법을 적용하고 있다. 그러나 기존 연구들에서는 모델 학습의 입력으로 사용되는 단어 임베딩에서 단어의 동형이의어 성질을 반영하지 못한다는 단점이 있다. 때문에 서로 다른 의미를 가진 동형이의어가 하나의 임베딩 값을 가지다 보니, 단어의 의미를 정확히 파악하지 못한채 관계 추출 모델을 학습한다고 볼 수 있다. 본 논문에서는 원격 지도 학습 기반 관계 추출 모델에 다중-어의 단어 임베딩을 적용한 모델을 제안한다. 다중-어의 단어 임베딩 학습을 위해 어의 중의성 해소 모듈을 활용하였으며, 관계 추출 모델은 문장 내 주요 특징을 효율적으로 파악하는 모델인 CNN과 PCNN을 활용하였다. 본 논문에서 제안하는 다중-어의 단어 임베딩 적용 관계추출 모델의 성능을 평가하기 위해 추가적으로 2가지 방식의 단어 임베딩을 학습하여 비교 평가를 수행하였고, 그 결과 어의 중의성 해소 모듈을 활용한 단어 임베딩을 활용하였을 때 관계추출 모델의 성능이 향상된 결과를 보였다.

  • PDF

CNN-based Distant Supervision Relation Extraction Model with Multi-sense Word Embedding (다중-어의 단어 임베딩을 적용한 CNN 기반 원격 지도 학습 관계 추출 모델)

  • Nam, Sangha;Han, Kijong;Kim, Eun-Kyung;Gwon, Seong-Gu;Jeong, Yu-Seong;Choi, Key-Sun
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.137-142
    • /
    • 2017
  • 원격 지도 학습은 자동으로 매우 큰 코퍼스와 지식베이스 간의 주석 데이터를 생성하여 기계 학습에 필요한 학습 데이터를 사람의 손을 빌리지 않고 저렴한 비용으로 만들 수 있어, 많은 연구들이 관계 추출 문제를 해결하기 위해 원격 지도 학습 방법을 적용하고 있다. 그러나 기존 연구들에서는 모델 학습의 입력으로 사용되는 단어 임베딩에서 단어의 동형이의어 성질을 반영하지 못한다는 단점이 있다. 때문에 서로 다른 의미를 가진 동형이의어가 하나의 임베딩 값을 가지다 보니, 단어의 의미를 정확히 파악하지 못한 채 관계 추출 모델을 학습한다고 볼 수 있다. 본 논문에서는 원격 지도 학습 기반 관계 추출 모델에 다중-어의 단어 임베딩을 적용한 모델을 제안한다. 다중-어의 단어 임베딩 학습을 위해 어의 중의성 해소 모듈을 활용하였으며, 관계 추출 모델은 문장 내 주요 특징을 효율적으로 파악하는 모델인 CNN과 PCNN을 활용하였다. 본 논문에서 제안하는 다중-어의 단어 임베딩 적용 관계추출 모델의 성능을 평가하기 위해 추가적으로 2가지 방식의 단어 임베딩을 학습하여 비교 평가를 수행하였고, 그 결과 어의 중의성 해소 모듈을 활용한 단어 임베딩을 활용하였을 때 관계추출 모델의 성능이 향상된 결과를 보였다.

  • PDF

A typing error-robust Korean POS tagging using Hangul Jamo combination-based embedding (오타에 강건한 자모 조합 임베딩 기반 한국어 품사 태깅)

  • Seo, Dae-Ryong;Chung, Youjin;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.203-208
    • /
    • 2017
  • 본 논문은 한글 자모 조합 임베딩을 이용하여 오타에 강건한 한국어 품사 태깅 시스템을 구축하는 방법에 대해 기술한다. 최근 딥 러닝 연구가 활발히 진행되면서 자질을 직접 추출해야 하는 기존의 기계학습 방법이 아닌, 스스로 자질을 찾아서 학습하는 딥 러닝 모델을 이용한 연구가 늘어나고 있다. 본 논문에서는 다양한 딥 러닝 모델 중에서 sequence labeling에 강점을 갖고 있는 bidirectional LSTM CRFs 모델을 사용하였다. 한국어 품사 태깅 문제에서 일반적으로 사용되는 음절 임베딩은 약간의 오타에도 품사 태깅 성능이 크게 하락하는 한계가 있었다. 따라서 이를 개선하기 위해 본 논문에서는 한글 자모 임베딩 값을 조합시킨 음절 임베딩 방식을 제안하였다. 강제로 오타를 발생시킨 테스트 집합에서 실험한 결과, 자모 조합 임베딩 기법이 word2vec 음절 임베딩 방식에 비해 형태소 분할은 0.9%, 품사 태깅은 3.5% 우수한 성능을 기록하였다.

  • PDF

A typing error-robust Korean POS tagging using Hangul Jamo combination-based embedding (오타에 강건한 자모 조합 임베딩 기반 한국어 품사 태깅)

  • Seo, Dae-Ryong;Chung, Youjin;Kang, Inho
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.203-208
    • /
    • 2017
  • 본 논문은 한글 자모 조합 임베딩을 이용하여 오타에 강건한 한국어 품사 태깅 시스템을 구축하는 방법에 대해 기술한다. 최근 딥 러닝 연구가 활발히 진행되면서 자질을 직접 추출해야 하는 기존의 기계학습 방법이 아닌, 스스로 자질을 찾아서 학습하는 딥 러닝 모델을 이용한 연구가 늘어나고 있다. 본 논문에서는 다양한 딥 러닝 모델 중에서 sequence labeling에 강점을 갖고 있는 bidirectional LSTM CRFs 모델을 사용하였다. 한국어 품사 태깅 문제에서 일반적으로 사용되는 음절 임베딩은 약간의 오타에도 품사 태깅 성능이 크게 하락하는 한계가 있었다. 따라서 이를 개선하기 위해 본 논문에서는 한글 자모 임베딩 값을 조합시킨 음절 임베딩 방식을 제안하였다. 강제로 오타를 발생시킨 테스트 집합에서 실험한 결과, 자모 조합 임베딩 기법이 word2vec 음절 임베딩 방식에 비해 형태소 분할은 0.9%, 품사 태깅은 3.5% 우수한 성능을 기록하였다.

  • PDF

Attentive Aggregation based Cross-modal Embedding (Attentive Aggregation(주의적 종합) 기반 크로스모달 임베딩)

  • Cha, Da-Eun;Ji, Hyesung;Lee, Yeonsoo;Lim, Heui-Seok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.155-160
    • /
    • 2019
  • 본 연구에서는 사진 검색을 위한 Attentive Aggregation(주의적 종합) 기반의 언어-시각 크로스모달 임베딩 모델을 제안한다. 본 연구에서는 크로스모달 임베딩을 활용한 검색 과제에서 검색 대상의 임베딩을 계산하는 새로운 방법으로 '질의 기반 종합 검색 대상 임베딩'을 제안하며, Attentive Aggregation 레이어를 활용하여 이를 적용한 크로스모달 임베딩 모델을 제안한다. 제안 모델은 정보량이 많은 사진 데이터로부터 여러 특징을 추출한 뒤 주어진 질의에 따라 이들을 선택적으로 반영한 임베딩을 계산할 수 있으며, 이에 따라 Recall@10 약 0.23, MAP@10 약 0.11, MRR 약 0.13으로 Baseline과 비교하였을 때 크게 향상된 사진 검색 성능을 보였다.

  • PDF

Performance Comparison of Word Embeddings for Sentiment Classification (감성 분류를 위한 워드 임베딩 성능 비교)

  • Yoon, Hye-Jin;Koo, Jahwan;Kim, Ung-Mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.760-763
    • /
    • 2021
  • 텍스트를 자연어 처리를 위한 모델에 적용할 수 있게 언어적인 특성을 반영해서 단어를 수치화하는 방법 중 단어를 벡터로 표현하여 나타내는 워드 임베딩은 컴퓨터가 인간의 언어를 이해하고 분석 가능한 언어 모델의 필수 요소가 되었다. Word2vec 등 다양한 워드 임베딩 기법이 제안되었고 자연어를 처리할 때에 감성 분류는 중요한 요소이지만 다양한 임베딩 기법에 따른 감성 분류 모델에 대한 성능 비교 연구는 여전히 부족한 실정이다. 본 논문에서는 Emotion-stimulus 데이터를 활용하여 7가지의 감성과 2가지의 감성을 5가지의 임베딩 기법과 3종류의 분류 모델로 감성 분류 학습을 진행하였다. 감성 분류를 위해 Logistic Regression, Decision Tree, Random Forest 모델 등과 같은 보편적으로 많이 사용하는 머신러닝 분류 모델을 사용하였으며, 각각의 결과를 훈련 정확도와 테스트 정확도로 비교하였다. 실험 결과, 7가지 감성 분류 및 2가지 감성 분류 모두 사전훈련된 Word2vec가 대체적으로 우수한 정확도 성능을 보였다.

Bilingual Word Embedding using Subtitle Parallel Corpus (자막 병렬 코퍼스를 이용한 이중 언어 워드 임베딩)

  • Lee, Seolhwa;Lee, Chanhee;Lim, Heuiseok
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.157-160
    • /
    • 2017
  • 최근 자연 언어 처리 분야에서는 단어를 실수벡터로 임베딩하는 워드 임베딩(Word embedding) 기술이 많은 각광을 받고 있다. 최근에는 서로 다른 두 언어를 이용한 이중 언어 위드 임베딩(Bilingual word embedding) 방법을 사용하는 연구가 많이 이루어지고 있는데, 이중 언어 워드 임베딩에서 임베딩 절과의 질은 학습하는 코퍼스의 정렬방식에 따라 많은 영향을 받는다. 본 논문은 자막 병렬 코퍼스를 이용하여 밑바탕 어휘집(Seed lexicon)을 구축하여 번역 연결 강도를 향상시키고, 이중 언어 워드 임베딩의 사천(Vocabulary) 확장을 위한 언어별 연결 함수(Language-specific mapping function)을 학습하는 새로운 방식의 모델을 제안한다. 제안한 모델은 기존 모델과의 성능비교에서 비교할만한 수준의 결과를 얻었다.

  • PDF

Performance analysis of Various Embedding Models Based on Hyper Parameters (다양한 임베딩 모델들의 하이퍼 파라미터 변화에 따른 성능 분석)

  • Lee, Sanga;Park, Jaeseong;Kang, Sangwoo;Lee, Jeong-Eom;Kim, Seona
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.510-513
    • /
    • 2018
  • 본 논문은 다양한 워드 임베딩 모델(word embedding model)들과 하이퍼 파라미터(hyper parameter)들을 조합하였을 때 특정 영역에 어떠한 성능을 보여주는지에 대한 연구이다. 3 가지의 워드 임베딩 모델인 Word2Vec, FastText, Glove의 차원(dimension)과 윈도우 사이즈(window size), 최소 횟수(min count)를 각기 달리하여 총 36개의 임베딩 벡터(embedding vector)를 만들었다. 각 임베딩 벡터를 Fast and Accurate Dependency Parser 모델에 적용하여 각 모들의 성능을 측정하였다. 모든 모델에서 차원이 높을수록 성능이 개선되었으며, FastText가 대부분의 경우에서 높은 성능을 내는 것을 알 수 있었다.

  • PDF

On Characteristics of Word Embeddings by the Word2vec Model (Word2vec 모델의 단어 임베딩 특성 연구)

  • Kang, Hyungsuc;Yang, Janghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.263-266
    • /
    • 2019
  • 단어 임베딩 모델 중 현재 널리 사용되는 word2vec 모델은 언어의 의미론적 유사성을 잘 반영한다고 알려져 있다. 본 논문은 word2vec 모델로 학습된 단어 벡터가 실제로 의미론적 유사성을 얼마나 잘 반영하는지 확인하는 것을 목표로 한다. 즉, 유사한 범주의 단어들이 벡터 공간상에 가까이 임베딩되는지 그리고 서로 구별되는 범주의 단어들이 뚜렷이 구분되어 임베딩되는지를 확인하는 것이다. 간단한 군집화 알고리즘을 통한 검증의 결과, 상식적인 언어 지식과 달리 특정 범주의 단어들은 임베딩된 벡터 공간에서 뚜렷이 구분되지 않음을 확인했다. 결론적으로, 단어 벡터들의 유사도가 항상 해당 단어들의 의미론적 유사도를 의미하지는 않는다. Word2vec 모델의 결과를 응용하는 향후 연구에서는 이런 한계점에 고려가 요청된다.