• Title/Summary/Keyword: 임무 계획

Search Result 235, Processing Time 0.024 seconds

Task Assignment of Multiple UAVs using MILP and GA (혼합정수 선형계획법과 유전 알고리듬을 이용한 다수 무인항공기 임무할당)

  • Choi, Hyun-Jin;Seo, Joong-Bo;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.427-436
    • /
    • 2010
  • This paper deals with a task assignment problem of multiple UAVs performing multiple tasks on multiple targets. The task assignment problem of multiple UAVs is a kind of combinatorial optimization problems such as traveling salesman problem or vehicle routing problem, and it has NP-hard computational complexity. Therefore, computation time increases as the size of considered problem increases. To solve the problem efficiently, approximation methods or heuristic methods are widely used. In this study, the problem is formulated as a mixed integer linear program, and is solved by a mixed integer linear programming and a genetic algorithm, respectively. Numerical simulations for the environment of the multiple targets, multiple tasks, and obstacles were performed to analyze the optimality and efficiency of each method.

A Review of the Candidate Areas and Missions for Lunar Landing Sites based on NASA Workshop & Overseas Landing Missions (NASA 워크숍 및 해외 착륙임무에 기반한 달 착륙 후보 지역과 임무에 대한 고찰)

  • Lee, Joohee;Rew, Dong-Young
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.375-395
    • /
    • 2021
  • Korea plans to send a pathfinder lunar orbiter to the Moon for the first time in August 2022. And according to the 3rd Basic Plan for Space Development Promotion, the plan is to send a lunar lander to the Moon before 2030. The selection of the lunar landing area can be varied depending on the lunar lander's mission, therefore preliminary research on the lunar landing sites is essential for a successful lunar exploration mission design. This paper analyzed the characteristics of major regions among 14 proposed regions using NASA's MoonTrek based on the data on the candidate areas for the major moon landing proposed sites by the NASA workshop in 2018. And we looked into what kind of future moon landing missions are suitable for these areas. We also looked at the importance of lunar Antarctica area through the recent lunar landing areas of Moon landing countries and Artemis plan.

Task Allocation and Path Planning for Multiple Unmanned Vehicles on Grid Maps (격자 지도 기반의 다수 무인 이동체 임무 할당 및 경로 계획)

  • Byeong-Min Jeong;Dae-Sung Jang;Nam-Eung Hwang;Joon-Won Kim;Han-Lim Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.56-63
    • /
    • 2024
  • As the safety of unmanned vehicles continues to improve, their usage in urban environments, which are full of obstacles such as buildings, is expected to increase. When numerous unmanned vehicles are operated in such environments, an algorithm that takes into account mutual collision avoidance, as well as static and dynamic obstacle avoidance, is necessary. In this paper, we propose an algorithm that handles task assignment and path planning. To efficiently plan paths, we construct a grid-based map and derive the paths from it. To enable quick re-planning in dynamic environments, we focus on reducing computational time. Through simulation, we explain obstacle avoidance and mutual collision avoidance in small-scale problems and confirm their performance by observing the entire mission completion time (Makespan) in large-scale problems.

Graphics Processing Units 를 활용한 위성 임무스케줄링 기법 고안 시 고려사항

  • Lee, Su-Jeon;Lee, Byeong-Seon;Kim, Jae-Hun;Jo, Yeong-Min
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.24.2-24.2
    • /
    • 2011
  • 천리안위성은 2010년 6월 27일에 발사되어 성공적으로 In Orbit Test (IOT)를 수행하고 있다. 천리안 위성을 지상에서 컨트롤 하기 위하여 ETRI 에서는 위성관제시스템을 개발하였으며, 현재 KARI에서 위성관제시스템을 운영중이다. 위성관제시스템의 일부인 임무계획 시스템은 기상/해양 이미지 촬영에 관한 임무요청, 위성체 기동 요청, 각동 이벤트 등을 종합하여 충돌 없는 임무스케줄을 만들어내게 되는데 이에 복잡한 스케줄링 기법이 요구된다. 천리안 위성의 임무 스케줄링 기법은 CPU 연산을 기본으로 하고 있으나, 이 논문에서는 Graphics Processing Units(GPU) 를 통한 임무 스케줄링 기법의 적용에 따르는 고려사항을 설명한다. 그리고 CPU 기반의 임무 스케줄링 기법과 GPU 기반의 임무 스케줄링 기법의 장단점을 분석한다.

  • PDF

Unit Mission Based Mission Planning and Automatic Mission Management for Robots (단위임무 기반 로봇의 임무 계획 및 자동화 임무 관리 방법론)

  • Lee, Ho-Joo;Park, Won-Ik;Kim, Do-Jong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this paper, it is suggested a method of mission planning and management for robots based on the unit mission. In order to make robots execute given missions continuously as time goes by, a new concept for planning the mission which is composed of one or more unit missions and an automatic mission management scheme are developed. For managing robot's missions in real time, six management methods are devised as well in order to cope with the mismatches, which occur frequently during the mission execution, as to the initial plan. Without the operator's involvement, any mismatch can be adjusted automatically by applying one of the mission management methods. The suggested concept of mission planning and mission management methods based on the unit mission are partially realized in the Dog-Horse robot system and it is checked that it can be a viable one for developing effective robot operation systems.

A Study on the Development of Intelligent Behavior of Humanoid Robot (휴머노이드 로봇의 지능적 행위 구현에 관한 연구)

  • Suh, Joohee;Jang, Inwoo;Woo, Chongwoo
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.23-26
    • /
    • 2008
  • 본 논문에서는 로봇의 지능적 행위를 구현하기 위하여 인공지능의 몇 가지 기법을 휴머노이드 로봇에 적용하고 이를 테스트 도메인에서 실험하는 연구결과를 기술하였다. 본 연구에서 적용한 기법들은, 인공지능의 계획기법에 기반한 로봇의 계획생성, A* 알고리즘을 적용한 길 찾기, 외부 센서 값에 기반한 장애물회피 및 로봇의 자기 위치인식, 그리고 원하는 물체를 파악하기 위해 템플릿 매칭을 이용한 영상인식 등 네 가지 방향으로 접근하였다. 전반적으로 로봇의 실험은, 웹 페이지로부터 사용자의 쇼핑 목록을 입력 받아, 인공지능의 계획기법에 기반하여 서버에서 이에 대한 실행계획을 만들고 난 후, 로봇이 서버로부터 TCP/IP 기반의 소켓 통신을 통하여 세부 실행계획을 전달받아 임무를 수행하게 된다. 또한 이러한 임무를 수행하기 위해서는 로봇자신의 현재위치에 대한 정보 및 목표물에 대한 위치인식이 요구되며, 이를 위해서 사전에 주어진 맵의 좌표를 찾아가는 방법을 사용하였다.

해외뉴스

  • Korea Aerospace Industries Association
    • Aerospace Industry
    • /
    • s.90
    • /
    • pp.57-59
    • /
    • 2006
  • 보잉,호주 737 AEW&C 주요 시험 완료/미 공군, 무인폭격기 개발에 20억 달러 투자/독일·프랑스, 대형 수송헬기 개발/미, 국방부 작년도 10대 방산계약업체 발 표/에어버스 밀리터리,A400M 수송기 형식증명 신청/나사,CEV 및 달착륙 임무계획 구체화/일본, 첨단 지상관측위성 발사/유럽우주기구,4대의 갈릴레오 항법위 성 제적 계약/X-51A 극초음속기 스크램제트 시험 계획/인도,유인우주임무 검토/캐나다 봄바디어,수호이의 RRJ사업참여 고려/프랑스 닷소사,중국에 팰컨 900DX 비즈제트 판매/중국,150인승 여객기 개발 준비/보잉 및 에어버스 기록적인 수주 실적

  • PDF

A Methodology for Evaluating Mission Suitability of Manned-Unmanned Aircraft Teaming for SEAD Missions (SEAD 임무 수행을 위한 유x무인기 협업 체계의 임무적합도 평가 방법론 연구)

  • Seo, Wonik;Lee, Hyun Moo;Kim, Jeong-Hun;Choi, Keeyoung;Jee, Cheol-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.935-943
    • /
    • 2020
  • This paper presents a methodology for evaluating suitability of a manned-unmanned aerial vehicle team for a complicated mission. The study identified vehicle performance, equipment performance and level of autonomy as the key factors that affect the mission effectiveness. A manned and an unmanned aircraft were compared, and their performance was quantized in these respects. SEAD was chosen as a representative manned-unmanned team mission. The SEAD mission was broken down to a sequence of tasks. Mission experts evaluated the importance of each mark item for the mission legs. Combining the results showed proper type of aircraft for each leg depending on the complexity, safety, and importance of the task. Finally, the whole mission plan was laid out as a time-based sequence which alleviate pilot workload significantly.

Earth Observation Mission Operation of COMS during In-Orbit Test (천리안위성 궤도상 시험의 지구 관측 임무 운영)

  • Cho, Young-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.89-100
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service after the In-Orbit Test (IOT) phase. The COMS is located on $128.2^{\circ}$ East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. During the IOT phase the functionalities and the performances of the COMS satellite and ground station have been checked through the Earth observation mission operation for the observation of the meteorological phenomenon over several areas of the Earth and the monitoring of marine environments around the Korean peninsula. The operation characteristics of meteorological mission and ocean mission are described and the mission planning for the COMS is discussed. The mission operation results during the COMS IOT are analyzed through statistical approach for the study of both the mission operation capability of COMS verified during the IOT and the satellite image reception capacity achieved during the IOT.

Multi-mission Scheduling Optimization of UAV Using Genetic Algorithm (유전 알고리즘을 활용한 무인기의 다중 임무 계획 최적화)

  • Park, Ji-hoon;Min, Chan-oh;Lee, Dae-woo;Chang, Woohyuck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.54-60
    • /
    • 2018
  • This paper contains the multi-mission scheduling optimization of UAV within a given operating time. Mission scheduling optimization problem is one of combinatorial optimization, and it has been shown to be NP-hard(non-deterministic polynomial-time hardness). In this problem, as the size of the problem increases, the computation time increases dramatically. So, we applied the genetic algorithm to this problem. For the application, we set the mission scenario, objective function, and constraints, and then, performed simulation with MATLAB. After 1000 case simulation, we evaluate the optimality and computing time in comparison with global optimum from MILP(Mixed Integer Linear Programming).