• Title/Summary/Keyword: 임계 각 속도

Search Result 89, Processing Time 0.026 seconds

The Tire Damage Classification by Pulse Interval Time Density Function of Ultrasonic Wave Envelope on Driving (주행 중 타이어 손상에 의해 발생하는 초음파 포락선 신호의 펄스 간격 시간밀도함수에 의한 손상 분별)

  • Shin, Seong-Geun;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2011
  • The tire damage classification method is researched by periodicity detection of ultrasonic envelope signals to occur at the driving vehicle tire. Because periodic signals is generated by rotations of the damaged tire, it should convert to pulse for using the density function. After time intervals of pulses are represented by the density function, the dominant periodicity is detected. The threshold to make a pulse is calculated by moving average of envelope signals. The result of time density function in case of one damage material, the first peak's time is equals to tire's rotation period, 162ms and 102ms, about the speed of 50km/h and 80km/h. In case of more than one damage material, the sum of each peak's time is equals to tire's rotation period about the speed.

A Fast Motion Estimation using Characteristics of Wavelet Coefiicients (웨이블릿 계수 특성을 이용한 고속 움직임 추정 기법)

  • Sun, Dong-Woo;Bae, Jin-Woo;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.397-405
    • /
    • 2003
  • In this paper, we propose an efficient motion estimation algorithm which can reduce computational complexity by using characteristics of wavelet coefficient in each subband while keeping about the same image quality as in using MRME(multiresolution motion estimation). In general, because of the high similarity between consecutive frames, we first decide whether the motion exists or not by just comparing MAD(mean absolute difference) between blocks with threshold in the lowest subbands of consecutive two frames. If it turns out that there is no motion in the lowest subband, we can also decide no motion exists in the higher subband. This is due to the characteristics of wavelet transform. Conversely, if we find any motion in the lowest subband, we can reduce computational complexity by estimating high subband motion vectors selectively according to the amount of computational complexity by estimating high subband motion vectors selectively according to the amount of energy in that subband. Experimental results are shown that algorithm suggested in this paper maintains about the same PSNR as MRME. However, the processing time was reduced about 30-50% compared with the MRME.

Fast Delineation of the Depth to Bedrock using the GRM during the Seismic Refaction Survey in Cheongju Granite Area (굴절법 탄성파탐사 현장에서 GRM을 이용한 청주화강암지역 기반암 깊이의 신속한 추정)

  • Lee, Sun-Joong;Kim, Ji-Soo;Lee, Cheol-Hee;Moon, Yoon-Sup
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.615-623
    • /
    • 2010
  • Seismic refraction survey is a geophysical method that delineates subsurface velocity structure using direct wave and critically refracted wave. The generalized reciprocal method(GRM) is an inversion technique which uses travel-time data from several forward and reverse shots and which can provide the geometry of irregular inclined refractors and structures underlain by hidden layer such as low velocity zone and thin layer. In this study, a simple Excel-GRM routine was tested for fast mapping of the interface between weathering layer and bedrock during the survey, with employing a pair of forward and reverse shots. This routine was proved to control the maximum dip of approximately $30^{\circ}C$ and maximum velocity contrast of 0.6, based on the panel tests in terms of dipping angle and velocity contrast for the two-layer inclined models. In contrast with conventional operation of five to seven shots with sufficient offset distance and indoor data analysis thereafter, this routine was performed in the field shortly after data acquisition. Depth to the bedrock provided by Excel-GRM, during the field survey for Cheongju granite area, correlates well with the elevation of the surface of soft rock from the drill core and SPS logging data. This cost-effective routine developed for quickly delineating the bedrock surface in the field survey will be readily applicable to mapping of weathering zone in narrow zone with small variation of elevation of bedrock.

Roles of Acid-Base Surface Interaction on Thermal and Mechanical Interfacial Behaviors of SiC/PMMA Nanocomposites (산-염기 표면반응이 탄화규소/PMMA 나노복합재료의 열적·기계적 계면특성에 미치는 영향)

  • Park, Soo-Jin;Oh, Jin-Seok
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.632-636
    • /
    • 2005
  • In this work, the effect of chemical treatments on surface properties of SiC was investigated in thermal and mechanical interfacial behaviors of SiC/PMMA nanocomposites. The acid/base value, contact angles, and FT-IR analysis were performed for the study of surface characteristics of the SiC studied. The thermal stabilities of the SiC/PMMA nanocomposites were investigated by thermogravimetric analysis (TGA). Also the mechanical interfacial properties of the composites were studied in critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$) measurements. As a result, the acidically treated SiC (A-SiC) had higher acid value than that of untreated SiC (V-SiC) or basically treated SiC (B-SiC). The acidic solution treatment led to an increase in surface free energy of the SiC, mainly due to the increase of its specific component. Thermal and mechanical interfacial properties of the SiC/PMMA nanocomposites, including initial decomposition temperature (IDT), $K_{IC}$, and $G_{IC}$ had been improved in the acidic treatment on SiC. This was due to the improvement in the interfacial bonding strength, resulting from the acid-base interfacial interactions between the fillers and polymeric matrix.

Counting Harmful Aquatic Organisms in Ballast Water through Image Processing (이미지처리를 통한 선박평형수 내 유해수중생물 개체수 측정)

  • Ha, Ji-Hun;Im, Hyo-Hyuk;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.3
    • /
    • pp.383-391
    • /
    • 2016
  • Ballast water provides stability and manoeuvrability to a ship. Foreign harmful aquatic organisms, which were transferred by ballast water, cause disturbing ecosystem. In order to minimize transference of foreign harmful aquatic organisms, IMO(International Maritime Organization) adopted the International Convention for the Control and Management of Ship's Ballast Water and Sediments in 2004. If the convention take effect, a port authority might need to check that ballast water is properly disposed of. In this paper, we propose a method of counting harmful aquatic organisms in ballast water thorough image processing. We extracted three samples from the ballast water that had been collected at Busan port in Korea. Then we made three grey-scale images from each sample as experimental data. We made a comparison between the proposed method and CellProfiler which is a well known cell-counting program based on image processing. Setting of CellProfiler is empirically chosen from the result of cell count by an expert. After finding a proper threshold for each image at which the result is similar to that of CellProfiler, we used the average value as the final threshold. Our experimental results showed that the proposed method is simple but about ten times faster than CellProfiler without loss of the output quality.

Time Series Data Analysis and Prediction System Using PCA (주성분 분석 기법을 활용한 시계열 데이터 분석 및 예측 시스템)

  • Jin, Young-Hoon;Ji, Se-Hyun;Han, Kun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.99-107
    • /
    • 2021
  • We live in a myriad of data. Various data are created in all situations in which we work, and we discover the meaning of data through big data technology. Many efforts are underway to find meaningful data. This paper introduces an analysis technique that enables humans to make better choices through the trend and prediction of time series data as a principal component analysis technique. Principal component analysis constructs covariance through the input data and presents eigenvectors and eigenvalues that can infer the direction of the data. The proposed method computes a reference axis in a time series data set having a similar directionality. It predicts the directionality of data in the next section through the angle between the directionality of each time series data constituting the data set and the reference axis. In this paper, we compare and verify the accuracy of the proposed algorithm with LSTM (Long Short-Term Memory) through cryptocurrency trends. As a result of comparative verification, the proposed method recorded relatively few transactions and high returns(112%) compared to LSTM in data with high volatility. It can mean that the signal was analyzed and predicted relatively accurately, and it is expected that better results can be derived through a more accurate threshold setting.

The Characteristics of Hot Air Drying of Red Pepper (고추의 열풍건조특성(熱風乾燥特性))

  • Chun, Jae-Kun;Kim, Kong-Hwan
    • Applied Biological Chemistry
    • /
    • v.17 no.1
    • /
    • pp.42-48
    • /
    • 1974
  • Hot air thin layer drying method was studied for red pepper, Capsicum annum var. longum as the whole and cut pod states, at various temperature and air velocities. Drying curve of whole pod showed a settling down period followed by the first and second falling rate periods. By lowering the drying temperature, the first falling rate period approached to a constant rate one. Cut drying curve had simple falling rate period and also cut drying method could effectively shorten the drying time. Drying rate constant, k, was varied with time for both the drying methods and the plots of k vs. time in two methods sugested the different drying mechanisms. When an average k was taken as a constant value, the following equations; $M-M_e/M_o-M_e=e^{-0.118t}$ and $M-M_e/M_o-M_e=e(-0.342t^{0.128})$ were applicable for whole and cut drying, respectively.

  • PDF

Relationship between Temperature and Egg Development of Nannophya pygmaea Rambur (Odonata: Libellulidae), an Endangered Dragonfly in Korea (한국의 멸종위기종인 꼬마잠자리(Nannophya pygmaea Rambur: 잠자리과, 잠자리목) 알의 발육과 온도의 관계)

  • Kim, Dong-Gun;Hwang, Jeong-Mi;Yoon, Tae-Joong;Bae, Yeon-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.292-296
    • /
    • 2009
  • This study was conducted to estimate relationship between temperature and egg development of Nannophya pygmaea, an endangerd dragonfly species in Korea, using eight different temperature conditions (17, 20, 22, 25, 28, 30, 33, and $36^{\circ}C$). Eggs of N. pygmaea were collected from female adults inhabited a small wetland in Mungyeong-si, Gyeongsangbuk-do, Korea, in June 2007. As a result, hatching rates were 2.86, 17.09, 24.32, 39.67, 34.43, 40.57, 44.79, and 1.75% at 17, 20, 22, 25, 28, 30, 33, and $36^{\circ}C$, respectively. The nonlinear model of the temperature related to egg development was well fit to the modified Sharpe and DeMichele model. The derived lower developmental threshold temperature for egg hatching was $14.02^{\circ}C$(y=0.005988x-0.084, $r^2$=0.99), and the derived optimal development temperature was $30{\sim}35^{\circ}C$.

Development of Impulse Propagation Model between Lanes through Temporal-Spatial Analysis (시공간적 분석을 통한 차로간 충격량 전파모형 개발)

  • Kim, Sang-Gu;Ryu, Ju-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.123-137
    • /
    • 2011
  • In general, flow propagation has been explained using the shock wave theory which is expressed as a function of variations in volume and density. However, the theory has certain limitation in portraying heterogeneous flow, e.g., flow propagation between lanes. Motivated by this fact, this study seeks a new measure for analyzing the propagation characteristics of traffic flow at three sections of highway (i.e., merging area, weaving section, and basic section) from temporal and spatial perspectives, and then develops a model for estimating the measure for the flow propagation. The "shock wave speed" which is the measure widely adopted in literature, was first applied to describe the propagation characteristics, but it was hard to find distinct characteristics in the propagation. This finding inspires to develop a new measure named "Impulse Volume". It is shown that the measure better explains the propagation characteristics at the three study sections of highway. In addition, several models are also developed by performing multi-regression analyses to explain the flow propagation between lanes. The models proposed in this paper can be distinguished in three sections and the lane placement.

Surfactant-Induced Suppression of the Thermocapillary Flow in Evaporating Water Droplets (증발하는 물방울의 계면활성제에 의한 열모세관 유동 억제)

  • Yun, Sungchan;Kim, Tae Kwon;Lim, Hee Chang;Kang, Kwan Hyoung;Lim, Geunbae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.695-701
    • /
    • 2013
  • The suppression of a thermocapillary flow (Marangoni flow) by a nonionic surfactant is experimentally investigated for evaporating pure water droplets on hydrophobic substrates. The experiment shows that as the initial concentration of the surfactant increases, the velocity and lifetime of the flow monotonically decrease. The result confirms the no-slip boundary condition at a liquid-air interface, which is explained on the basis of the previous model regarding the effect of surfactants on the no-slip condition. Interestingly, at an initial concentration much less than a critical value, it is found that depinning of the contact line occurs during the early stage of evaporation, which is ascribed to a reduction in the contact angle hysteresis owing to the presence of the Marangoni flow.