대부분의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 분할을 위해 양봉(bimodal) 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기(valley)를 선택하는 것만으로도 양호한 임계치 결과를 얻을수 있으나, 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 그리고 한 영상에서는 넓은 영역에 걸쳐 명암도 변화가 일어나고 다양한 유형의 물체가 포함되어 있으므로 스케치 특징점 유무를 판별하는 임계치의 결정에는 애매 모호함이 존재한다. 따라서 본 논문에서는 영상에 대해 삼각형 타입의 소속함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화하는 방법을 제안한다. 제안된 퍼지 이진화 방법은 평균 밝기 값을 기준으로 가장 어두운 픽셀 값과 가장 밝은 픽셀값의 거리를 계산하여 밝기의 조정률을 구하여 최소 밝기값과 최대 밝기 값을 설정하고 삼각형의 소속 함수에 적용한다. 소속 함수에 적용된 소속도를 a-cut 을 적용하여 영상을 이진화한다. 다양한 영상에 적용한 결과, 기존의 이진화 방법보다 제안된 퍼지 이진화 방법이 효율적인 것을 알 수 있었다.
대부분 이진화 알고리즘은 임계치를 결정하기 위해 히스토그램을 사용하여 밝기 분포를 분석한다. 배경과 물체의 명암 차이가 큰 경우는 분할을 위해 양봉 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기를 선택하는 것으로도 양호한 임계치를 찾을 수 있지만 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 이 문제점을 개선하기 위해 삼각형 타입의 소속 함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화 하는 퍼지 이진화 방법이 제안되었다. 퍼지 이진화 방법은 소속 함수에 적용된 소속도를 a-cut에 적용하여 영상을 이진화 한다. 그러나 기존의 퍼지 이진화 방법은 a-cut값을 경험적으로 설정하기 때문에 다양한 영상을 이진화하는 과정에서 정보 손실이 많이 발생하는 문제점이 있다. 따라서 본 논문에서는 FCM 클러스터링 알고리즘을 이용하여 퍼지 이진화 방법의 a-cut값을 동적으로 설정하여 이진화하는 방법을 제안한다. 제안된 방법을 다양한 영상에 적용한 결과, 배경과 물체의 명암도 차이가 크게 나지 않는 영상의 경우에는 기존의 퍼지 이진화 방법보다 정보 손실이 적은 상태로 이진화되는 것을 확인하였다.
본 논문에서는 비닐 튜브의 결함검사에 이용하기 위한 이진화 임계치의 자동 결정방법과 패턴매칭에 이용되는 패턴 모델의 자동 친정방법에 대하여 기술한다. 256 Gray 영상을 받아 들여 이진화 임계치를 결성하기 위해서, 휘도치 분포 곡선에서 2개의 극대값을 찾고, 두 극대 위치의 중간위치를 이진화 임계치로 결정하는 방법을 이용하였다. 그리고 패턴 모델을 생성하기 위하여는 수직, 수평 방향의 누적함(Profile)을 이용하였다. 이 방법은 인쇄물 검사 시스템뿐 아니라 비슷한 휘도치 분포를 같는 반도체 자동 검사 시스템을 비롯한 일반적인 건사 시스템에 적용이 가능하다.
대부문의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 분할을 위해 양봉(bimadal) 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기(valley)를 선택하는 것만으로도 양호한 임계치 결과를 얻을 수 있다. 하지만 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성이 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 그리고 한 영상에서는 넓은 영역에 걸쳐 명암도 변화가 일어나고 다양한 유형의 물체가 있을 때 스케치 특징점의 유무를 판별하는 임계치의 결정에는 애매모호함이 존재한다. 따라서, 본 논문에서는 영상에 대한 삼각형 타입의 소속함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화하는 알고리즘을 제안한다. 제안된 퍼지 이진화 알고리즘은 원 영상을 특정 크기의 윈도우로 나누어서 윈도우의 소속 함수에 대한 소속도를 구하여 영상을 이진화한다. 다양한 영상에 적용한 결과, 기존의 이진화 기법보다 제안된 퍼지 이진화 알고리즘이 효율적인 것을 알 수 있었다.
대부분의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기 분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 분할을 위해 양봉 히스토그램을 보일 때는 최적의 임계치를 한기 위해 히스토그램 골짜기를 선택하는 것만으로도 양호한 임계치 결과를 얻을 수 있으나, 배경과 물체의 밝기 차이가 크지 않거나 자기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 본 논문에서는 RGB 컬러 모형의 각 색상에 대하여 퍼지 소속 함수를 적용하고, 그 결과를 이용해 배경에 비해 가독성이 높은 특징들을 배경과 분리하는 방법을 제시한다. 제안된 이진화 방법은 RGB의 각 색상에 퍼지 소속 함수를 적용하여 얻은 값들을 이용해 이진화한다. 기존의 임계치를 이용한 이진화 방법에 비해 잡음 영역을 상당히 제거 할 수 있으며, 컨테이너 영상에 적용한 결과, 기존의 방법에 비해 효율적인 것을 확인하였다.
영상의 이진화(image binarization)는 문자 인식, 영상 분석 등의 전처리 과정으로 다양한 분야에 적용되고 있다. 이진화는 임계치의 설정에 따라 작업 성능이 평가되며 대부분의 이진화 방법은 히스토그램을 사용하여 평균 밝기값이나 히스토그램의 골짜기(valley)를 임계치로 결정한다. 이와 같은 방법은 양봉의 특징을 보이지 않거나 특정 영상을 추출할 경우에는 적절한 임계치를 얻기 어렵다. 따라서 본 논문에서는 그레이스케일 영상에서 밝기 값을 여러 구간으로 분해하여 구간 밝기값의 평균값을 구하고, 각 구간의 평균값 사이 공간을, 각 구간의 양극과의 거리 비율로 나누어서 계산된 값을 임계치로 설정한다. 제안된 이진화 방법의 성능을 평가하기 위하여 다양한 영상에 적용한 결과, 기존의 이진화 방법들보다 효율적인 것을 확인하였다.
본 논문에서는 다양한 영상에서 객체들의 정보 손실을 최소화한 상태에서 영상을 이진화하기 위해 ${\alpha}-cut$을 동적으로 설정하는 개선된 퍼지 이진화 방법을 제안한다. 제안된 퍼지 이진화 방법은 평균 밝기 값을 기준으로 가장 어두운 픽셀 값과 가장 밝은 픽셀 값의 거리를 계산하여 소속 함수의 구간을 설정한다. 그리고 소속 함수에서 소속도를 구한 후, 영상을 이진화 하기 위해 최대 밝기 값에서 중간 밝기 값을 나눈 값을 ${\alpha}-cut$값으로 설정한 후에 구간 임계치를 이용하여 영상을 이진화 한다. 제안된 퍼지 이진화 방법의 효율성을 확인하기 위해 다양한 영상을 대상으로 실험한 결과, 기존의 퍼지 이진화 방법보다 객체와 배경 사이의 명암도가 한쪽에 치우친 분포를 가진 영상과 넓게 분포된 영상에서 모두 객체들의 정보의 손실이 적은 상태에서 이진화되는 것을 확인할 수 있었다.
영상의 이진화는 문자 인식, 영상 분석 등 다양한 영상 처리 분야의 전처리 과정으로 자주 적용되고 있다. 영상 이진화는 임계치의 설정에 따라 처리 성능이 좌우되며, 대부분의 기존 이진화 방법은 밝기 값의 히스토그램을 사용하여 평균 밝기 값이나 히스토그램의 골짜기를 임계치로 설정한다. 이와 같은 방법은 양봉의 특징을 보이지 않거나 특정 영상을 추출하려는 경우에는 적절한 임계치를 얻기 어렵다. 따라서 본 논문에서는 그레이 스케일 영상에서 밝기 값을 여러 구간으로 분할하여 각 구간의 밝기 평균값을 구하고, 두 개의 구간에 대해 평균값 사이의 거리를 각 구간에서 평균값과 양극과의 거리 비율로 나누어서 계산된 값을 두 개의 구간을 합친 새로운 구간의 임계치로 설정한다. 최종적으로 하나의 구간이 생성될 때까지 구간 통합과 임계값 계산을 반복함으로써 이진화 임계값을 산출한다. 제안된 이진화 방법의 성능을 평가하기 위하여 다양한 종류의 영상에 적용한 결과, 기존의 이진화 방법들보다 효율적인 것을 확인하였다.
대부분의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기 분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 양봉 형태의 히스토그램이 나타나며 최적의 임계치를 찾기 위해 히스토그램 골짜기를 선택하는 것만으로도 양호한 임계치 결과를 얻을 수 있다. 반면에 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다 본 논문에서는 RGB 컬러 모형의 각 색상에 대하여 퍼지 소속 함수를 적용하고, 그 결과를 이용해 배경에 비해 가독성이 높은 특징들을 배경과 분리하는 방법을 제안한다. 제안된 이진화 방법은 RGB의 각 색상에 퍼지 소속 함수를 적용하여 얻은 값들을 이용해 이진화한다. 기존의 임계치를 이용한 이진화 방법에 비해 잡음 영역을 상당히 제거 할 수 있으며, 운송 컨테이너 영상에 적용한 결과, 기존의 방법에 비해 효율적인 것을 확인하였다.
카메라 영상에 의한 자동차 번호판 인식시스템은 영상 획득, 번호판 추출, 전처리, 문자 분리, 문자 인식 등 크게 5자기의 핵심 부분으로 구성된다. 따라서 자동차 번호판 인식시스템의 성능을 향상시키기 위해서는 이들 부분들 각각의 성능의 최적화가 필요하다. 본 연구는 자동차 번호판 인식시스템의 여러 단계 중 전처리에 해당하는 번호판 영역의 이진화에 관한 연구로서, 기존의 단일 임계치 방법과 다중 임계치 방법이 해결하지 못했던 부분을 보완하는 새로운 다중 임계치 방법을 제안한다. 본 논문에서 제안하는 다중 임계치 알고리즘(Adaptive Multi-threshold Algorithm)을 사용함으로써 gray-level 번호판 영상에 대해서 보다 깨끗한 이진 영상을 얻을 수 있었으며, 또한 이 알고리즘은 번호판 영역의 밝기값이 고르지 않은 영상에 대해서도 효율적인 알고리즘 임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.