• Title/Summary/Keyword: 임계온도

Search Result 561, Processing Time 0.032 seconds

A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions (고압터빈 노즐에서 입구온도분포와 장착조건에 따른 저주기 피로 수명 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho;Seo, Do Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1145-1151
    • /
    • 2015
  • High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

Estimation of Critical Degree of Hydration and Thermal Expansion Coefficient of Early-Age Concrete from Measured Temperature, Strain and Stress (온도, 변형 및 응력 계측을 통한 초기재령 콘크리트의 임계수화도 및 열팽창계수 추정)

  • 오병환;최성철;신준호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.809-814
    • /
    • 2002
  • Recently, the properties of early-age concrete are increasingly important because these properties directly influence the behavior of early-age concrete structures including stress and cracking behavior. Nevertheless, the studies on early-age concrete are limited to strength and temperature development. The purpose of present study is to propose a simple and rational method which can predict the stress and strain behavior of young age concrete. A series of test have been done to measure the temperature development, strains and stresses in concrete members. The concept of equivalent age was used to define the degree of hydration and this degree of hydration was used to calculate the strength and elastic modulus. The critical degree of hydration and thermal expansion coefficient were calculated using experimental data. It is seen that the critical degree of hydration range from 0.05 to 0.11 based on the measuring method. The thermal expansion coefficient was calculated based on the measured non-mechanical strain and it is found that the coefficient decreases slightly with the increase of age. The consideration of critical degree of hydration in calculating stresses gives more accurate results. The present study provides useful method and data in evaluating early-age behavior of concrete structure.

  • PDF

Characteristics and analysis of clamp-type optical current transformer using faraday effect (Faraday효과를 이용한 클램프형 광-전류 변류기의 특성 및 분석)

  • 김수길;이용욱;이병호;송민호;임용훈
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.399-405
    • /
    • 2003
  • We manufactured a clamp-type optical current transformer (COCT) head using FD10 glass. It was manufactured of two parts of FD10 glass with symmetrical structure and was designed so that light propagates along the critical angle in order to avoid a phase difference with the light within the sensor head at reflection. Also, we measured and analyzed the current of conductor from 0 to 1,000 AT, change of optical power with incidence angle of light, temperature and polarization of light, long-term current measurement using COCT head, and demonstrated the feasibility of manufactured COCT through those experiments.

A Study on the Impact Fracture Behavior of Glass Fiber Polyethylene Composites (GF/PE 복합재료의 충격파괴거동에 관한 연구)

  • 엄윤성;최영근;양병춘;김형진;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.167-173
    • /
    • 2003
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness G$_{IC}$ was performed by the impact test in this work. The main goal of this work is to study the effect of temperature and span of specimen supports on the results of Charpy impact test for GF/PE composite. The critical fracture energy and failure mechanism of GF/PE composites were investigated in the temperature range of $60^{\circ}C;to;-50^{\circ}C$ by the Charpy impact test. The critical fracture energy showed the maximum at the ambient temperature, and it tended to decrease as the temperature increased or decreased from the ambient temperature. The major failure mechanisms are the fiber matrix debonding, the fiber pull-out and/or delamination and the matrix deformation.n.

Prediction of thermal shock failure of glass during PDP manufacturing process (PDP 제조 공정시 유리의 열충격 파손 예측)

  • 김재현;최병익;이학주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.122-129
    • /
    • 2004
  • There is an increasing need for large flat panel display devices. PDP (Plasma Display Panel) is one of the most promising candidates for this need. Thermal shock failure of PDP glass during manufacturing process is a critical issue in PDP industry since it is closely related to the product yield and the production speed. In this study, thermal shock resistance of PDP glass is measured by water quenching test and an analysis scheme is described for estimating transient temperature and stress distributions during thermal shock. Based on the experimental data and the analysis results, a simple procedure for predicting the thermal shock failure of PDP glass is proposed. The fast cooling process for heated glass plates can accelerate the speed of PDP production, but often leads to thermal shock failure of the glass plates. Therefore, a design guideline for preventing the failure is presented from a viewpoint of high speed PDP manufacturing process. This design guideline can be used for PDP process design and thermal -shock failure prevention.

Thermal Properties and fracture Toughness of Difunctional Epoxy Resins Cured by Catalytic Initiators (촉매형 개시제로 경화된 이관능성 에폭시 수지의 열적 특성 및 파괴인성)

  • 박수진;허건영;이재락
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.344-352
    • /
    • 2002
  • In this work, two thermal cationic latent catalysts, i.e., triphenyl benzyl phosphonium hexafluoroantimonate (TBPH) and benzyl 2-methylpyrazinium hexafluoroantimonate (BMPH) were newly synthesized. And the thermal and mechanical properties of difunctional epoxy (diglycidylether of bisphenol h, DGEBA) resins initiated by 1 phr of either TBPH or BMPH catalyst were investigated. As experimental results, the epoxy/TBPH system showed higher curing temperature and critical stress intensity factor ($K_{IC}$) than those of epoxy/BMPH. This could be interpreted in terms of slow thermal diffusion rate and bulk structure of four phenyl groups in TBPH. However, the decomposed activation energy determined from Coats-Redfern method was lower in the case of epoxy/TBPH. This result was probably due to the fact that broken short chain structure was developed by steric hindrance of TBPH.

The crystal growth of amorphous materials in a 2.45 GHz microwave field (2.45 GHz 마이크로파장에서 무정형 재료로부터의 $PbTiO_3$결정 성장)

  • 박성수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.255-262
    • /
    • 1998
  • This study investigated the crystallization behaviour of sealing amorphous material heat-treated by conventional and microwave heating source. From X-ray diffraction and SEM analyses, it was shown that microwave heat-treated sample had well-grown $PbTiO_3$crystals and the high degree of crystallinity inspite of its heat-treated condition of shorten time and lower temperature as compared with a conventionally heat-treated sample. It was assumed that microwaves inhibit the nucleation of $PbTiO_3$crystal in nucleation stage, but promote the growth of $PbTiO_3$crystal above the critical size of crystal due to enhanced diffusion effect within the sample.

  • PDF

Evaluation on the Thermal Damage of Steel Embedded in Concrete in Tunnel Fire(Modified Hydrocarbon Curve) (터널 화재(Modified Hydrocarbon Curve)시콘크리트에 매입된 강재의 열적 손상 평가)

  • Park, Kyoung-Hoon;Kim, Heung-Yeol;Kim, Hyung-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.485-488
    • /
    • 2008
  • Fire intensity in tunnel fire is very severe, which might cause the spalling on the surface of shotcrete and concrete lining exposed to the heat as well as rapidly-reducing stress due to heat transfer by steel material such as anchor embedded in tunnel which plays the critical role in securing the stability of the tunnel. In this study, a fire test to identity the heat intensity(Modifired Hydrocarbon Curve) and the fire resistance of steel materials embedded as parameters, was carried out. And the evaluation to identify the thermal damage, which was based on critical temperature range for thermal damage of steel materials determined according to the road tunnel fire resistance standard established by ITA(International Tunneling Association).

  • PDF

Experimental Study of Thermo-electric material using Lithium-Ammonia$(Li(NH_3)_n)$ Solution (리튬-암모니아 $(Li(NH_3)_n)$ 용액을 이용한 열전기적 특성 실험)

  • Park, Han-Woo;Kim, Ji-Beom;Jeon, Joon-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.263-270
    • /
    • 2011
  • The aim of this paper is, through the experiment of Lithium-Ammonia solutions $(Li(NH_3)_n)$, to analyze and verify a thermoelectric-conversion property at near Ammonia-boiling point ($-40^{\circ}C$). The experiment results show that the solutions with 0.58 MPM~1.87 MPM generate thermoelectric power at temperature difference $({\Delta}T=0{\sim}15^{\circ}C)$ where Current is constantly proportional to Voltage. This paper provides a new insight into the development of a thermoelectric material.

Substrate effects on the characteristics of $YBa_2Cu_3O_{7-x}$ thin films prepared by RF magnetron sputtering (RF마그네트론 스퍼터링법으로 제조한 $YBa_2Cu_3O_{7-x}$전도체 박막의 특성에 대한 기판의 영향)

  • 신현용;박창엽
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.6-12
    • /
    • 1995
  • High Tc superconducting YBa$_{2}$Cu$_{3}$$O_{7-x}$ thin films were prepared on various substrates by off-axis rf magnetron sputtering method to examine the substrate effects on the film structure and its R-T characteristics. The SEM analysis showed that the surface morphology of the grown YBa$_{2}$Cu$_{3}$O.sub 7-x/, film has different characteristic structure with different substrate used. The film on (100) SrTiO$_{3}$ substrate has critical current density of 3*10$^{5}$ A/cm$^{2}$ at 77K under zero magnetic field. The X-ray diffraction measurements revealed that the films on (100) SrTiO$_{3}$ substrate have mixed a-axis and c-axis normal to the substrate surface and the films on (100) MgO and ZrO$_{2}$/sapphire substrates have c-axis normal orientation to the substrate surface. However, YBa$_{2}$Cu$_{3}$$O_{7-x}$ films on (100) sapphire substrates showed no preferential orientation.ion.

  • PDF