• Title/Summary/Keyword: 임계값 검출 알고리즘

Search Result 135, Processing Time 0.02 seconds

Water body extraction using block-based image partitioning and extension of water body boundaries (블록 기반의 영상 분할과 수계 경계의 확장을 이용한 수계 검출)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.471-482
    • /
    • 2016
  • This paper presents an extraction method for water body which uses block-based image partitioning and extension of water body boundaries to improve the performance of supervised classification for water body extraction. The Mahalanobis distance image is created by computing the spectral information of Normalized Difference Water Index (NDWI) and Near Infrared (NIR) band images over a training site within the water body in order to extract an initial water body area. To reduce the effect of noise contained in the Mahalanobis distance image, we apply mean curvature diffusion to the image, which controls diffusion coefficients based on connectivity strength between adjacent pixels and then extract the initial water body area. After partitioning the extracted water body image into the non-overlapping blocks of same size, we update the water body area using the information of water body belonging to water body boundaries. The update is performed repeatedly under the condition that the statistical distance between water body area belonging to water body boundaries and the training site is not greater than a threshold value. The accuracy assessment of the proposed algorithm was tested using KOMPSAT-2 images for the various block sizes between $11{\times}11$ and $19{\times}19$. The overall accuracy and Kappa coefficient of the algorithm varied from 99.47% to 99.53% and from 95.07% to 95.80%, respectively.

Color-Depth Combined Semantic Image Segmentation Method (색상과 깊이정보를 융합한 의미론적 영상 분할 방법)

  • Kim, Man-Joung;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.687-696
    • /
    • 2014
  • This paper presents a semantic object extraction method using user's stroke input, color, and depth information. It is supposed that a semantically meaningful object is surrounded with a few strokes from a user, and has similar depths all over the object. In the proposed method, deciding the region of interest (ROI) is based on the stroke input, and the semantically meaningful object is extracted by using color and depth information. Specifically, the proposed method consists of two steps. The first step is over-segmentation inside the ROI using color and depth information. The second step is semantically meaningful object extraction where over-segmented regions are classified into the object region and the background region according to the depth of each region. In the over-segmentation step, we propose a new marker extraction method where there are two propositions, i.e. an adaptive thresholding scheme to maximize the number of the segmented regions and an adaptive weighting scheme for color and depth components in computation of the morphological gradients that is required in the marker extraction. In the semantically meaningful object extraction, we classify over-segmented regions into the object region and the background region in order of the boundary regions to the inner regions, the average depth of each region being compared to the average depth of all regions classified into the object region. In experimental results, we demonstrate that the proposed method yields reasonable object extraction results.

Extraction of Waterline Using Low Altitude Remote Sensing (저고도 원격탐사 영상 분석을 통한 수륙경계선 추출)

  • Jung, Dawoon;Lee, Jong-Seok;Baek, Ji-Yeon;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.337-349
    • /
    • 2020
  • In this study, Helikite, Low Altitude Remote Sensing (LARS) platform, was used to acquire coastal images. In the obtained image, the land and water masses were divided using four types of region clustering algorithms, and then waterline was extracted using edge detection. Quantitative comparisons were not possible due to the lack of in-situ waterline data. But, based on the image of the infrared band where water masses and land are relatively clear, the waterlines extracted by each algorithm were compared. As a result, it was found that each algorithm differed significantly in the part where the distinction between water masses and land was ambiguous. This is considered to be a difference in the process of selecting the threshold value of the digital number that each algorithm uses to distinguish the regions. The extraction of waterlines through various algorithms is expected to be used in conjunction with a Low Altitude Remote Sensing system that can be continuously monitored in the future to explain the rapid changes in coastal shape through several years of long-term data from fixed areas.

Digital Watermarking using ART2 Algorithm (ART2 알고리즘을 이용한 디지털 워터마킹)

  • 김철기;김광백
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.81-97
    • /
    • 2003
  • In this paper, we suggest a method of robust watermarking for protection of multimedia data using the wavelet transform and artificial neural network. for the purpose of implementation, we decompose a original image using wavelet transform at level 3. After we classify transformed coefficients of other subbands using neural network except fur the lowest subband LL$_3$, we apply a calculated threshold about chosen cluster as the biggest. We used binary logo watermarks to make sure that it is true or not on behalf of the Gaussian Random Vector. Besides, we tested a method of dual watermark insertion and extraction. For the purpose of implementation, we decompose a original image using wavelet transform at level 3. After we classify transformed coefficients of other subbands using neural network except for the lowest subband LL$_3$, we apply a above mentioned watermark insert method. In the experimental results, we found that it has a good quality and robust about many attacks.

  • PDF

Automatic Coastline Extraction and Change Detection Monitoring using LANDSAT Imagery (LANDSAT 영상을 이용한 해안선 자동 추출과 변화탐지 모니터링)

  • Kim, Mi Kyeong;Sohn, Hong Gyoo;Kim, Sang Pil;Jang, Hyo Seon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.45-53
    • /
    • 2013
  • Global warming causes sea levels to rise and global changes apparently taking place including coastline changes. Coastline change due to sea level rise is also one of the most significant phenomena affected by global climate change. Accordingly, Coastline change detection can be utilized as an indicator of representing global climate change. Generally, Coastline change has happened mainly because of not only sea level rise but also artificial factor that is reclaimed land development by mud flat reclamation. However, Arctic coastal areas have been experienced serious change mostly due to sea level rise rather than other factors. The purposes of this study are automatic extraction of coastline and identifying change. In this study, in order to extract coastline automatically, contrast of the water and the land was maximized utilizing modified NDWI(Normalized Difference Water Index) and it made automatic extraction of coastline possibile. The imagery converted into modified NDWI were applied image processing techniques in order that appropriate threshold value can be found automatically to separate the water and land. Then the coastline was extracted through edge detection algorithm and changes were detected using extracted coastlines. Without the help of other data, automatic extraction of coastlines using LANDSAT was possible and similarity was found by comparing NLCD data as a reference data. Also, the results of the study area that is permafrost always frozen below $0^{\circ}C$ showed quantitative changes of the coastline and verified that the change was accelerated.