• 제목/요약/키워드: 일축 압축소결

검색결과 5건 처리시간 0.017초

공구강 분말 성형체의 고온 치밀화 성형공정 (High Temperature Densification Forming Process of Tool Steel Powder Compact)

  • 최학현;전윤철;김기태
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2182-2195
    • /
    • 1996
  • Densification characteristics and behavior of tool steel powder compact during high temperature forming processes were investigated under pressure less sintering, sinter forging and hot isostastic pressing. In pressureless sintering, full density was obtained at a closely controlled temperature near the solidus of the material. Finite element calculations from constitutive model for densification by power law creep and diffusional flow were compared with experimental data. Agreements between theoretical calculations and experimental data were good in hot isostatic pressing but not as good in sinter forging.

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2749-2761
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing. Finite element results by using the proposed model also well predicted experimental data in the literature for densification behavior of nanocrystalline zirconia powder during pressureless sintering and sinter forging.

열가소성 고분자를 이용한 다공질 알루미나의 제조 (Fabrication of Porous Al2O3 Ceramics Using Thermoplastic Polymer)

  • 이상진;김해두
    • 한국세라믹학회지
    • /
    • 제41권7호
    • /
    • pp.513-517
    • /
    • 2004
  • 기공크기와 형태를 제어하여 열전도도 이방성을 나타내기 위해 판상의 기공이 배향된 다공질 알루미나 소결체의 제조방법을 연구하였다. 속이 가스로 차있는 열가소성 고분자 microsphere를 알루미나 분말과 혼합한 후 일축 가압 열변형 방법을 이용하여 15 MPa의 압력으로 가압한 상태에서 20$0^{\circ}C$까지 승온하여 microsphere를 판상으로 변형시킨 후, 1,00$0^{\circ}C$에서 1시간동안 소결하였다. Microsphere의 함량이 10wt%인 경우 45.3%의 기공율을 나타내었으며, 44 MPa의 꺾임강도 값을 나타내었다. 미세구조를 살펴본 결과 판상기공이 압축방향과 수직방향으로 배향되었으며, 열전도도를 측정한 결과 압축방향으로 3.803 W/mK, 측면방향으로는 7.818 W/mK로서 두 값의 비는 2 이상이었다.

Ti-6Al-4V 분말 성형체의 상온 및 고온에서의 치밀화 거동 (Densification Behavior of Ti-6Al-4V Powder Compacts at Room and High Temperatures)

  • 홍승택;김기태;양훈철
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1124-1132
    • /
    • 2000
  • Viscoplastic response and densification behaviors of Ti-6AI-4V powder compacts under uniaxial compression are studied at room and high temperatures with various initial relative densities and strain rates. The yield function and strain-hardening law proposed by Kim and co-workers were implemented into a finite element program (ABAQUS) to compare experimental data with finite element calculations for porous Ti6A14V powder compacts. Displacement-relative density, displacement-load relations and deformed geometry of Ti-A14V powder compacts were compared with finite element results. Density distributions in Ti-6AI-4V powder compacts were also measured and compared with finite element results.