• Title/Summary/Keyword: 일산화탄소 산화반응

Search Result 84, Processing Time 0.029 seconds

Oxidation Characteristics of Low Concentration CO Gas by the Natural Manganese Dioxide(NMD) in a Fixed Bed (고정층 반응기에서 망간광석(NMD)을 이용한 저농도 일산화탄소 산화특성)

  • Lee, Young Soon;Park, Jong Soo;Oh, Kwang Joong
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.60-68
    • /
    • 1996
  • The oxidation of carbon monoxide of low concentration on the natural manganese dioxide (NMD) has been investigated in a fixed bed reactor. The experimental variables were concentration of oxygen (500ppm~99.8%) and carbon monoxide (500ppm~10000ppm) and catalyst temperature ($50{\sim}750^{\circ}C$). The NMD(Natural Manganese Dioxide) has been characterized by temperature - program reduction(TPR) using 2.4% $CO/H_2$ as a reducing agent, thermogravimetric analysis (TGA), and reduction of NMD by 2.4% $CO/H_2$. It was found that the NMD catalyst activity on the unit area was greater than the $MnO_2$ catalyst for oxidation of CO at the same temperature. The thermal stability of oxidation activity was considered to be maintained when the NMD was heated to $750^{\circ}C$. The TGA, reduction by CO, and TPR of the NMD showed that the NMD had active lattice oxygen which was easily liberated on heating in the absence and low concentration of oxygen. The reaction order in CO is 0.701 between 500~3500ppm and almost zero between 3500~10000ppm of CO.

  • PDF

Kinetics of the Oxidation of Carbon Monoxide on NiO at Low Temperature (저온 일산화탄소의 산화반응속도론적 연구)

  • Choi, Jae-Shi;Kim, Keu-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 1974
  • The catalytic reaction between carbon monoxide and oxygen was investigated in the presence of catalysts which were specially treated by applying an annealing method at different monoxide and oxygen and at reaction temperatures in the region of partial pressures of carbon $40^{\circ}C$ to $95^{\circ}C$. The oxidation rate is highest on NiO annealed at low temperature in vacuum. The data has been correlated with the first order kinetics, and the activation energies from the Arrhenius equation are found to be 4Kcal/mole in the region of the experimental temperatures. The excess oxygen in NiO obtained from the decomposition of $NiCO_3$does not cause activation at $95^{\circ}C$. But NiO catalysts annealed again in vacuum display activation even at $40^{\circ}C$. The quantity of the excess oxygen in NiO surfaces seems to be the controlling factor in determining the rates of oxidation of carbon monoxide.

  • PDF

Minimization of Carbon Monoxide in the High Efficient Catalytic Shift for Fuel Cell Applications (연료전지용 고효율 촉매전이 반응의 일산화탄소 저감)

  • Park, Heon;Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.528-532
    • /
    • 2007
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$(steam) followed by water gas shift(WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift(HTS) and a low temperature shift(LTS). In the WGS operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about $3\sim4%$ followed to about 0.5% via a low temperature shift catalyst. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 0.5%.

Glycerol Carbonate Synthesis by Glycerol Oxidative Carbonylation over Copper Catalysts (구리 촉매상에서 글리세롤의 산화 카르보닐화 반응에 의한 글리세롤 카보네이트 합성)

  • Choi, Jae Hyung;Lee, Sang Deuk;Woo, Hee Chul
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.416-422
    • /
    • 2013
  • In environmental friendly aspects, the synthesis of glycerol carbonate from glycerol using carbon monoxide and oxygen gases which were produced in petrochemical plants was studied. The oxidative carbonylation of glycerol under batch reaction system was performed on parameter conditions such as effect of various metals (Cu, Pd, Fe, Sn, Zn, Cr), oxidizing agents, mole ratio of carbon monoxide to oxygen, catalyst amount, solvent types, reaction temperature and time and dehydrating agents. In particular copper chloride catalysts showed the excellent activities, and the glycerol carbonate yields over CuCl and $CuCl_2$ catalysts were the maximum of 44% and 64%, respectively at the following reaction conditions: solvent as nitrobenzene, mole ratio of 1:3:0.15 (glycerol:carbon monoxide:catalyst), mole ratio of 2:1 (carbon monoxide:oxygen), the total pressure of 30 bar at 413 K for 4 hr. It was found that reactivity were significantly different depending on the oxidation number of Cu catalysts, and oxygen plays an important role as oxidizing agents in producing H2O during oxidation reaction after carbonylation of glycerol.

Photochemical Behavior of Carbon Monoxide in Aqueous Suspension of ZnO (ZnO 수용액중에서 일산화탄소의 광화학적 거동)

  • Chul-Ho Park;Woo-Suk Chang;Yong-Sung Kim;Hyoung-Ryun Park
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.213-219
    • /
    • 2003
  • The photochemical transformation of carbon monoxide in aqueous solution has been investigated at $25{\pm}0.1^{\circ}C$using ZnO as a photocatalyst. After irradiation of 253.7 nm UV light in the solution, carboxylation and carbonylation processes were carried out, and the formation of formic acid, oxalic acid, glyoxylic acid, formaldehyde and glyoxal was observed. The formation of the products depended on the pH values in the solution. The yield of formaldehyde and glyoxal increased in acidic solution whereas it decreased in basic solution. When the pH values in the solution increased above 11.5, the yield of formic acid increased rapidly. The initial quantum yields of the products were determined and the probable mechanisms for the reactions were presented on the basis of the products analysis.

Removal of Carbon Monoxide from Anthracite Flue Gas by Catalytic Oxidation (I) (촉매반응에 의한 연탄 연소가스로부터 일산화탄소의 제거 (제1보))

  • Chung Ki Ho;Lee, Won Kook
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.431-437
    • /
    • 1976
  • On the condition of adequate air supply, complete removal of carbon monoxide,occurred above $650^{\circ}C$. Using catalysts, the oxidation of carbon monoxide occurred at lower temperatures; on both $MnO_2 \;and\;30%\;MnO_2-70%\;CuO\;at\;250{\circ}C,\;on\;CuO\;at\;450{\circ}C,\;on\;50%\;MnO_2-50%\;CuO\;at\;200{\circ}C,\;and\;on\;70%\;MnO_2-30%\;CuO\;at\;180{\circ}C$. Manganese dioxide (p-type) showed higher activity than cupric oxide (n-type) and a catalyst consisting of 60% $MnO_2-40%$ CuO had the highest activity of all the $MnO_2$-CuO mixture. Over the range of transitional temperature, carbon monoxide removal efficiency decreased linearly with increasing inlet carbon monoxide concentration while temperature was fixed. Residence time of gases in the catalytic reactor, in the range of 0.9 to 1.8 seconds, gave no effect on carbon monoxide conversion.

  • PDF

Synthesis and Characterization of a Series of PtRu/C Catalysts for the Electrooxidation of CO (일산화탄소 산화를 위한 PtRu/C 시리즈 촉매의 합성 및 특성 연구)

  • Lee, Seonhwa;Choi, Sung Mook;Kim, Won Bae
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.432-439
    • /
    • 2012
  • The electrocatalytic oxidation of CO was studied using carbon-supported 20 wt% PtRu (PtRu/C) catalysts, which were prepared with different Pt : Ru atomic ratios from 7 : 3 to 3 : 7 using a colloidal method combined with a freeze-drying procedure. The bimetallic PtRu/C catalysts were characterized by various physicochemical analyses, including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). CO stripping voltammetry measurements indicated that the addition of Ru with a Pt catalyst significantly improved the electrocatalytic activity for CO electrooxidation. Among the tested catalysts, the $Pt_5Ru_5/C$ catalyst had the lowest onset potential (vs.Ag/AgCl) and the largest CO EAS. Structural modification via lattice parameter change and electronic modification in the unfilled d band states for Pt atoms may facilitate the electrooxidation of CO.

Catalytic Oxidation of Carbon Monoxide on Pt and $SnO_2$ (Pt 및 $SnO_2$ 촉매하에서의 일산화탄소의 산화반응)

  • Kwang Yul Choo;Hasuck Kim;Bonghyun Boo
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.183-192
    • /
    • 1980
  • Oxidation reactions of carbon monoxide on $SnO_2$, Sb-doped $SnO_2$, and Pt catalyst were studied. The oxidation reaction was found to be first order with respect to both CO and O$_2$ on $SnO_2$ and Sb-doped $SnO_2$ catalysts, and to be of half order on Pt catalyst. A small addition of Sb to $SnO_2$ (depant composition: 0.05∼0.1 mol %) increased the rate of oxidation. On the contrary, a large addition decreased the rate. From the rate expression of oxidation on Pt catalyst, the inhibition effect of carbon monoxide on the rate of oxidation was deduced. The experimentally obtained activatio energies were 5.7 kcal for the Sb doped $SnO_2$ catalyst (dopant composion: 0.05 mole%), and 6.4 kcal for the Pt catalyst. A possible reaction mechanism was proposed from the experimentally obtained kinetic data.

  • PDF

Investigation on CO Adsorption and Catalytic Oxidation of Commercial Impregnated Activated Carbons (상용 첨착활성탄의 일산화탄소 흡착성능 및 촉매산화반응 연구)

  • Ko, Sangwon;Kim, Dae Han;Kim, Young Dok;Park, Duckshin;Jeong, Wootae;Lee, Duck Hee;Lee, Jae-Young;Kwon, Soon-Bark
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.513-517
    • /
    • 2013
  • We investigated the properties of impregnated activated carbons, a commercial adsorbent for the individual protection equipment, and examined CO adsorption and oxidation to $CO_2$. The surface area, pore volume and pore size were measured for four commercial samples using Brunauer-Emmett-Teller/Barrett-Joyner-Halenda (BET/BJH), and atomic compositions of the sample surface were analyzed based on SEM/EDS and XPS. Impregnated activated carbons containing Mn and Cu for fire showed the catalytic CO oxidation to $CO_2$ with a high catalytic activity (up to 99% $CO_2$ yield), followed by the CO adsorption at an initial reaction time. On the other hand, C: for chemical biologial and radiological (CBR) samples, not including Mn, showed a lower CO conversion to $CO_2$ (up to 60% yield) compared to that of fire samples. It was also found that a heat-treated activated carbon has a higher removal capacity both for CO and $CO_2$ at room temperature than that of untreated carbon, which was probably due to the impurity removal in pores resulted in a detection-delay about 30 min.