• Title/Summary/Keyword: 일사량 예측

Search Result 159, Processing Time 0.026 seconds

Explainable Solar Irradiation Forecasting Based on Conditional Random Forests (조건부 랜덤 포레스트 기반의 설명 가능한 일사량 예측)

  • Moon, Jihoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.323-326
    • /
    • 2020
  • 태양광 발전은 이산화탄소 배출로 인한 기후 변화에 대응하는 주요 수단으로 인식되어 수요와 필요성이 급격하게 증가하고 있다. 최적의 태양광 발전 시스템의 운영을 위해서는 정교한 전력수요 및 태양광 발전량 예측 모델이 요구되며, 온도 및 일사량은 태양광 발전량 예측 모델의 필수적인 입력 변수이다. 하지만, 한국 기상청의 동네예보는 일사량에 관한 예측값을 제공하지 않아 정교한 태양광 발전량 예측 모델을 구축하는 것은 어렵다. 이를 위해 일사량 예측 기법에 관한 많은 연구사례가 보고되고 있지만, 다수의 연구들은 충분한 데이터 셋을 이용하여 일사량 예측 모델을 개발하였다. 초기 태양광 발전 시스템 운영을 위해서는 불충분한 데이터 셋을 이용한 예측 모델 개발이 필요하나 이에 대한 사례는 불충분하다. 본 논문은 실제 태양광 발전 시스템에서 수집된 불충분한 데이터 셋을 이용한 단기 일사량 예측 기법을 제안한다. 먼저, 기상청 동네예보의 다양한 기상 요인들을 이용하여 일사량 예측 모델을 위한 입력 변수를 구성한다. 다음으로, 조건부 랜덤 포레스트를 이용하여 일사량 예측 모델을 구성하며, 설명 가능한 일사량 예측뿐만 아니라 더욱더 많은 데이터 셋을 학습하기 위해 시계열 교차검증을 수행한다. 실험 결과, 제안한 기법은 다른 예측 기법들보다 높은 예측 정확도를 보일 뿐만 아니라 설명 가능한 예측 결과를 제시할 수 있음을 보여준다.

Predict Solar Radiation for Photovoltaic System of Maritime City (해양도시의 태양광 발전을 위한 일사량 예측기법)

  • Won, Jong-Min;Do, Geun-Yeong;Lee, Jeong-Jae;Jeong, Su-Yeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.197-198
    • /
    • 2010
  • 태양광발전량의 예측에 대해 많은 선행연구가 진행되었으나 연간 또는 월별 총발전량을 비교하기 위한 것이 주류였기 때문에 연간 또는 월별의 평균일사량을 바탕으로 발전량을 예측 비교하고 있다. 그러나 도시차원에서 전력생산 및 공급의 최적화를 위해서는 시간 및 기상에 따란 변화하는 일사량과 그에 따른 발전량을 예측하여 효율적인 전력생산 공급계획을 수립할 필요가 있지만 기상예보에는 일사량 정보가 포함되어 있지 않기 때문에 기상예보에 제공되는 운량을 이용하여 일사량을 예측할 수 있는 기법개발이 절실하다. 본 연구에서는 해양도시인 부산을 대상으로 과거의 기상데이터 중 운량과 일사량을 이용하여 일사량 예측기법을 제안하고자 한다.

  • PDF

A study on solar irradiance forecasting with weather variables (기상변수를 활용한 일사량 예측 연구)

  • Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.1005-1013
    • /
    • 2017
  • In this paper, we investigate the performances of time series models to forecast irradiance that consider weather variables such as temperature, humidity, cloud cover and Global Horizontal Irradiance. We first introduce the time series models and show that regression ARIMAX has the best performance with other models such as ARIMA and multiple regression models.

A Dynamic Piecewise Prediction Model of Solar Insolation for Efficient Photovoltaic Systems (효율적인 태양광 발전량 예측을 위한 Dynamic Piecewise 일사량 예측 모델)

  • Yang, Dong Hun;Yeo, Na Young;Mah, Pyeongsoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.11
    • /
    • pp.632-640
    • /
    • 2017
  • Although solar insolation is the weather factor with the greatest influence on power generation in photovoltaic systems, the Meterological Agency does not provide solar insolation data for future dates. Therefore, it is essential to research prediction methods for solar insolation to efficiently manage photovoltaic systems. In this study, we propose a Dynamic Piecewise Prediction Model that can be used to predict solar insolation values for future dates based on information from the weather forecast. To improve the predictive accuracy, we dynamically divide the entire data set based on the sun altitude and cloudiness at the time of prediction. The Dynamic Piecewise Prediction Model is developed by applying a polynomial linear regression algorithm on the divided data set. To verify the performance of our proposed model, we compared our model to previous approaches. The result of the comparison shows that the proposed model is superior to previous approaches in that it produces a lower prediction error.

Solar radiation forecasting by time series models (시계열 모형을 활용한 일사량 예측 연구)

  • Suh, Yu Min;Son, Heung-goo;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.785-799
    • /
    • 2018
  • With the development of renewable energy sector, the importance of solar energy is continuously increasing. Solar radiation forecasting is essential to accurately solar power generation forecasting. In this paper, we used time series models (ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH). We compared the performance of the models using mean absolute error and root mean square error. According to the performance of the models without exogenous variables, the Seasonal ARIMA-GARCH model showed better performance model considering the problem of heteroscedasticity. However, when the exogenous variables were considered, the ARIMAX model showed the best forecasting accuracy.

Modeling Solar Irradiance in Tajikistan with XGBoost Algorithm (XGBoost를 이용한 타지키스탄 일사량 예측 모델)

  • Jeongdu Noh;Taeyoo Na;Seong-Seung Kang
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.403-411
    • /
    • 2023
  • The possibility of utilizing radiant solar energy as a renewable energy resource in Tajikistan was investigated by assessing solar irradiance using XGBoost algorithm. Through training, validation, and testing, the seasonality of solar irradiance was clear in both actual and predicted values. Calculation of hourly values of solar irradiance on 1 July 2016, 2017, 2018, and 2019 indicated maximum actual and predicted values of 1,005 and 1,009 W/m2, 939 and 997 W/m2, 1,022 and 1,012 W/m2, 1,055 and 1,019 W/m2, respectively, with actual and predicted values being within 0.4~5.8%. XGBoost is thus a useful tool in predicting solar irradiance in Tajikistan and evaluating the possibility of utilizing radiant solar energy.

Predict Solar Radiation According to Weather Report (일기예보를 이용한 일사량 예측기법개발)

  • Won, Jong-Min;Doe, Geun-Young;Heo, Na-Ri
    • Journal of Navigation and Port Research
    • /
    • v.35 no.5
    • /
    • pp.387-392
    • /
    • 2011
  • The value of Photovoltaic as an independent power supply is small, but the city's carbon emissions reduction and for the reduction of fossil fuel use distributed power is the power source to a very high value. However, according to the weather conditions for solar power generation by power fluctuations because of the size distribution to be effective, the big swing for effectively controlling real-time monitoring should be made. But that depends on solar power generation solar radiation forecasts from the National Weather Service does not need to predict it, and this study, the diffuse sky radiation in the history of the solar radiation in the darkness of the clouds, thick and weather forecasts can be inferred from the atmospheric transmittance to announce this value is calculated to represent each weather forecast solar radiation and solar radiation predicted by substituting the expression And the measured solar radiation and CRM (Cloud Cover Radiation Model) technique with an expression of Kasten and Czeplak irradiation when compared to the calculated predictions were verified.

Study of The Performance Analysis of a Solar Power Utility with 1.3MW (1.3MW급 태양광 발전소 성능 분석에 관한 연구)

  • Park, Jaegyun;Yun, Jungnam;Lee, Somi;Yun, Kyungshick
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.71.1-71.1
    • /
    • 2010
  • 본 연구는 1.3 MW급 태양광 발전소에서 기온 및 일사량에 따른 발전성능이 유지 보수 및 사후관리에 따라 성능이 향상될 수 있음을 실측자료를 통해 입증하는데 목적이 있다. 실측자료는 2008년 5월 전북 부안에 설치된 태양광 발전소에서 측정된 기온 및 일사량에 따른 발전량을 이용하였으며, 측정기간은 2009년 1월~2009년 12월까지 1년간 모니터링을 한 데이터를 기반으로 분석하였고, 발전소 성능 지표인 PR(Performance Ratio)을 계산하여 자료로 활용하였다. 또한, 실측자료는 PVSYST를 이용하여 실측자료와 동일한 조건에서 예측된 시뮬레이션 발전량 및 PR값과 비교 분석하였다. 실측자료와 해석결과의 비교에서 월단위로 측정된 실측 발전량과 예측 발전량은 유사한 경향을 나타냈으며, 실측 발전량은 예측 발전량 대비 약 5% 낮게 나타났다. 또한, 실측 PR값은 예측 PR값보다 약 4.97% 높게 나타났는데, 이는 해석을 위해 적용되는 일사량(기상청)과 실측 일사량이 다르고, Team Function 방식으로 구동되는 인버터와 시뮬레이션에서의 인버터 구동방식의 차이 때문인 것으로 판단된다. 한편, 일조량의 증가에 따른 1.3MW급 태양광 발전소의 발전량은 비례적으로 증가하는 경향을 나타냈으며, 7월의 경우 기후특성으로 인하여 국부적으로 감소하는 특성을 나타낸다.

  • PDF

Estimation of Future Trend for Solar Radiation Data Management (일사량 데이터 관리를 위한 미래 변화 추이 예측)

  • Oh, In-Bae;Lee, Bong-Keun;Ahn, Yoon-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.218-230
    • /
    • 2007
  • Measured values of solar radiation data have a characteristic that they change almost by the minute, so original data can be massive. Therefore, we need to construct a database which stores and manages history data of solar radiation data systematically. A study of an estimation method of the future change trend is also required. In this paper, we present a data structure in order to store history data of solar radiation data and propose an estimation method for the change trend of solar radiation that applies to a time-series decomposition method. Also, we present the results of experiments based on measured data from 20 domestic cities in Korea.

Study on Optimization of Tilt Angle for Stationary Solar Voltaic Module (고정식 태양 집광판의 설치각도 최적화에 관한 연구)

  • Kim, Moonki;Kim, Daeyeong;Yun, Hongsun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.129-129
    • /
    • 2017
  • 태양광 발전으로 생산된 전력으로 냉방기나 난방기를 직접 구동하는 경우에 냉방을 위해서는 7,8,9월 집광량이 많아야 하고, 난방을 위해서는 12,1,2월에 집광량이 많아야 한다. 하지만 일반적으로 사용되는 집광판은 평판형의 고정식이 대부분으로 필요에 따라서 집광량을 변동시키는 것이 불가능하다. 따라서 전력부하가 가장 큰 시기에 집량광이 가장 많아지도록 설치되어야 한다. 본 연구에서는 최적의 집광판 설치조건을 구명하기 위하여 집광판의 설치 각도에 따른 년중 일사량을 예측하기 위한 모델을 개발하고 계산된 일사량과 기상청에서 실측한 일사량을 비교하였다. 분석 대상은 대전(북위 36도 22분)으로 하였다. 년간 최대 일사량을 확보할 수 있는 집광판 설치각은 $36^{\circ}$로 분석되었다. 반면에 월별로 최대 일사량을 확보하기 위한 집광판 설치각도는 1월에 $57^{\circ}$, 2월에 $48^{\circ}$, 3월에 $36^{\circ}$, 4월에 $24^{\circ}$, 5월에 $15^{\circ}$, 6월에 $12^{\circ}$, 7월에 $15^{\circ}$, 8월에 $24^{\circ}$, 9월에 $36^{\circ}$, 10월에 $45^{\circ}$, 11월에 $57^{\circ}$, 12월에 $60^{\circ}$로 예측되었다. 한편 냉방부하가 많은 6.7.8.9월에 최대 일사량을 확보하기 위한 집광판 설치각도는 $21^{\circ}$로 예측되었다. 이상의 결과로 볼 때 태양광 발전을 위한 집광판은 전력부하와 용처에 따라 적정한 설치각도를 결정하는 것이 중요한 것으로 판단되었고, 본 연구에서 개발된 예측모델이 이러한 작업에 유효하게 사용될 수 있을 것으로 판단되었다.

  • PDF