Journal of the Korea Society of Computer and Information
/
v.28
no.2
/
pp.201-207
/
2023
In this paper, we propose an optimal model for mid to long-term price prediction of agricultural products using LGBM, MLP, LSTM, and GRU to compare and analyze the three strategies of the Multi-Step Time Series. The proposed model is designed to find the optimal combination between the models by selecting methods from various angles. Prior agricultural product price prediction studies have mainly adopted traditional econometric models such as ARIMA and LSTM-type models. In contrast, agricultural product price prediction studies related to Multi-Step Time Series were minimal. In this study, the experiment was conducted by dividing it into two periods according to the degree of volatility of agricultural product prices. As a result of the mid-to-long-term price prediction of three strategies, namely direct, hybrid, and multiple outputs, the hybrid approach showed relatively superior performance. This study academically and practically contributes to mid-to-long term daily price prediction by proposing an effective alternative.
83년 7월부터 NYMEX 선물시장에서 거래되기 시작한 원유선물은 90년대 들어 주식 채권 외환 등의 금융시장과 관련하여 크게 성장하고 있으며, 원유선물가격이 현물시장에서의 가격형성에 큰 영향을 미치고 있다. 따라서, 원유선물가격이 미래의 현물가격에 대한 최적의 예측치라고 하는 합리적기대모형(合理的期待模型)에 의거하여 원유선물 가격과 현물가격의 변화추이 및 그들 사이의 장(長) 단기(短期) 균형관계(均衡關係)(동태적통합(動態的統合))와 효율성(效率性)등을 일별(日別) NYMEX 선물유가(근월도래선물(近月到來先物)의 종가(終價))와 WTI 현물유가의 자료를 이용하여 계량분석하였다. 원유선물가격과 현물가격은 단위근(單位根)을 갖는 불안정(不安定)한 시계열이지만, 선물유가와 현물유가사이에는 공적분관계(共積分關係)(공통확률적추세(共通確率的趨勢))가 있어 장기적(長期的) 균형관계(均衡關係)가 존재하며, 또한 공시계열상관관계(共時系列相關關係)(공통안정적순환(共通安定的循環))가 있어 단기적(短期的) 균형관계(均衡關係)도 존재하는 것으로 보여진다. 그리고 선물유가는 미래의 현물유가에 대한 예측력이 있는 것으로 보여진다. 따라서, 원유선물가격이 미래의 현물가격에 대한 최적의 예측치라고 히는 합리적기대모형(合理的期待模型)과 일치하는 것으로 나타났다. 원유선물가격이 현물가격과 장(長) 단기적(短期的)으로 동태적(動態的)인 균형관계를 보이고 있으므로 정부의 합리적인 수입선다변화정책과 유가자유화에 따른 석유업계의 효율적인 운영방안의 하나로 원유선물시장의 활용이 더욱 더 필요할 것으로 생각된다.
Vegetables such as cabbage are greatly affected by natural disasters, so price fluctuations increase due to disasters such as heavy rain and disease, which affects the farm economy. Various efforts have been made to predict the price of agricultural products to solve this problem, but it is difficult to predict extreme price prediction fluctuations. In this study, cabbage prices were analyzed using the ensemble Voting technique, a method of determining the final prediction results through various classifiers by combining a single classifier. In addition, the results were compared with LSTM, a time series analysis method, and XGBoost and RandomForest, a boosting technique. Daily data was used for price data, and weather information and price index that affect cabbage prices were used. As a result of the study, the RMSE value showing the difference between the actual value and the predicted value is about 236. It is expected that this study can be used to select other time series analysis research models such as predicting agricultural product prices
Climate change, a result of increasing global warming, has been receiving more public attention due to its serious impact upon many industries. In this study we consider sustainable- (Green-) Growth and Green-Finance, and in particular temperature derivatives, as appropriately active responses to the world's significant climate change trends. We characterize the daily average temperatures in Seoul, South Korea with their seasonal properties and cycles of error terms. We form forecasting models and perform Monte Carlo simulations, and find that the risk-neutral values for CDD call-options and HDD put-options have risen since 1960s, which implies that the trend of temperature increase can be quantified in the financial markets. Contrary to the existing models, the Vasicek model with the explicit consideration of cycles in the error terms suggests that the significant option-values for the CDD call -options above certain exercise prices, implying that there is the possibility of explicit hedging against the considerable and stable increase in temperature.
주가(株價)의 예측(豫測)이 가능하다는 최근 실증결과들로 말미암아 증권시장의 효율성(效率性)에 강한 의문이 제기되고 있다. 주가(株價)의 반전(反轉)(price reversal)이 주가의 예측을 가능하게 한다는 것이다. 혹자는 증권시장이 정보에 과잉반응(過剩反應)을 나타내고 그 후 이를 수정함으로서 주가의 반전이 나타난다고 주장한다. 또 혹자는 호가(呼價)스프레드(spreads)의 존재로 인하여 주가의 반전이 있을 수 있다고 한다. 실제로, 때로는 매수호가에 때로는 매도호가에 거래가 이루어지고 있기 때문이다. 본 연구는 KOSPI 200 구성주식의 일별(日別)수익률 자료를 이용한 실증분석에서 다음과 같은 중요한 사항들을 발견하였다. 첫째, 한국증권시장에 주가반전(株價反轉)이 있다는 것을 확인하였으며, 이러한 단기 주가반전의 주된 원천은 시장(市場)의 과잉반응(過剩反應)이 아니라 호가(呼價)스프레드라는 것을 발견하였다. 일중(日中)에도 물론 주가가 반전하고 있음을 확인하였다. 둘째, 호가스프레드에 의한 변동성으로 말미암아 거래가격을 기준으로 한 일별수익률의 변동성(變動性)이 상당히 과대(過大) 추정(推定)될 수 있음을 발견하였다. 일별수익률 분산의 약 15%는 호가스프레드로 설명(說明)할 수 있었다. 마지막으로, 본 연구결과는 다음과 같은 점을 시사(示峻)하고 있다. 우리 나라에서 호가스프레드는 딜러마켓에서와 같은 '마진'의 의미가 전혀 없다. 따라서 호가스프레드의 크기를 결정하는데 있어 중요한 역할을 하는 '호가단위(呼價單位)'를 적절한 수준으로 가능한한 작게 하는 것이 바람직 할 것이다. 이는 매도자와 매수자의 의견접근을 용이하게 함으로서 매매(賣買)의 성립(成立)을 촉진할 뿐만 아니라, 특히 기관투자자의 거래비용(去來費用)을 줄일 수 있으며, 또 호가스프레드로 인한 앞서의 불필요한 변동성(變動性)을 줄이는 효과도 아울러 기할 수 있을 것이다.
In general, the interest rate is forecasted by the parametric method which assumes the interest rate follows a certain distribution. However the method has a shortcoming that forecasting ability would decline when the interest rate does not follow the assumed distribution for the stochastic behavior of interest rate. Therefore, the nonparametric method which assumes no particular distribution is regarded as a superior one. This paper compares the interest rate forecasting ability between the two method for the Monetary Stabilization Bond (MSB) market in Korea. The daily and weekly data of the MSB are used during the period of August 9th 1999 to February 7th 2003. In the parametric method, the drift term of the interest rate process shows the linearity while the diffusion term presents non-linear decline. Meanwhile in the nonparametric method, both drift and diffusion terms show the radical change with nonlinearity. The parametric and nonparametric methods present a significant difference in the market price of interest rate risk. This means in forecasting the interest rate and the market price of interest rate risk, the nonparametric method is more appropriate than the parametric method.
Journal of the Korea Society of Computer and Information
/
v.27
no.11
/
pp.147-155
/
2022
In this study, we developed a system to dynamically balance a daily stock portfolio and performed trading simulations using gradient boosting and genetic algorithms. We collected various stock market data from stocks listed on the KOSPI and KOSDAQ markets, including investor-specific transaction data. Subsequently, we indexed the data as a preprocessing step, and used feature engineering to modify and generate variables for training. First, we experimentally compared the performance of three popular gradient boosting algorithms in terms of accuracy, precision, recall, and F1-score, including XGBoost, LightGBM, and CatBoost. Based on the results, in a second experiment, we used a LightGBM model trained on the collected data along with genetic algorithms to predict and select stocks with a high daily probability of profit. We also conducted simulations of trading during the period of the testing data to analyze the performance of the proposed approach compared with the KOSPI and KOSDAQ indices in terms of the CAGR (Compound Annual Growth Rate), MDD (Maximum Draw Down), Sharpe ratio, and volatility. The results showed that the proposed strategies outperformed those employed by the Korean stock market in terms of all performance metrics. Moreover, our proposed LightGBM model with a genetic algorithm exhibited competitive performance in predicting stock price movements.
본 논문은 금융실명제가 기업에서 발표하는 회계학적 이익정보에 대한 주식가격의 변화에 미치는 영향을 분석하였다. 이는 금융실명제실시 이후에는 기업에서 창출해 내는 기업이익이 진정한 이익에 보다 더 접근을 할 것이라 예상과 채무분석가의 기업이익에 대한 예측치는 진정한 이익에 대한 예측치이므로 금융실명제 실시 이후에는 예측오차가 감소할 것이다는 일반적 예상을 검증하기 위한 것이다. 본 논문은 먼저 1992년과 1993년 12월 결산기업에 대하여 비기대이익을 계산하여 두 해에서의 차이를 분석하였고, 계산된 비기대이익과 기업이익 공시시점에서의 비정상수익율과의 관계를 회귀분석을 통하여 분석하였다. 채무분석가의 예측치로서 대우경제연구소에서 1992년과 1993년 12월에 각각 발표한 각 상장기업의 이익에 대한1992년 및 1993년의 예상치를 각각 년도의 예상기업 이익으로 사용하고 실제로 1993년과 1994년 초에 공시되는 기업이익과의 차이를 조사하였다. 비정상수익율의 계산은 시장위험조정모형과 시장조정모형을 사용하였고 일별수익율에 의하여 측정하였다. 사건 시점은 주주총회 일을 중심으로하여 여러 사건 기간을 택하여 분석을 하였다. 실증적 분석 결과를 보면, 전체표본을 대상으로한 재무분석가의 추정치에 의하여 계산된 비기대이익의 분산이 금융실명제 실시 이후가 실시 이전에 비하여 더 크게 나타났다. 이러한 결과는 금융실명제의 실시로 인하여 재무분석가의 예측이 오히려 더 부정확하게 나타난 것이라 할 수 있다. 이러한 결과는 실명제 실시에 따라서 기업이익예측에 대한 불확실성이 더 증가를 하여 기업이익 공시시점에서의 비기대이익의 측정에서의 오차가 오히려 증가하였다는 것을 알 수 있다. 그러나 전체표본을 소그룹으로 나누어서, 1부에 속한 기업들과 대형 주기업들을 대상으로한 분석에서는 이 두 소그룹에 속한 기업들이 각각 금융실명제실시 이후가 금융실명제 실시 이전보다 비기대이익의 분산이 작게 나타났다. 이러한 결과는 1부에 속한 기업들과 대형주기업들에서 는 금융실명제실시로 채무분석가들의 이익 예측치가 더 정확성을 지니게 된 것으로 해석된다. 이익반응계수의 추정에서 예상했던 바와는 반대로 금융실명제 실시 이후에 계수의 크기가 오히려 감소하였다. 소그룹으로 나누어서 분석한 결과도 마찬가지였다. 금융실명제 실시가 기업회계이익에 미친 영향은 비기대이익의 측정을 통하여 일부 가설과 일치하는 결과를 얻었고, 이익반응계수의 측정에서는 가설과 일치하는 결과를 얻지 못하였다.
Volatility forecasting in financial markets is an important issue because it is directly related to the profit of return. The volatility is generally modeled as time-varying conditional heteroskedasticity. A generalized autoregressive conditional heteroskedastic (GARCH) model is often used for modeling; however, it is not suitable to reflect structural changes (such as a financial crisis or debt crisis) into the volatility. As a remedy, we introduce the Markov regime switching GARCH (MRS-GARCH) model. For the empirical example, we analyze and forecast the volatility of the daily Korea Composite Stock Price Index (KOSPI) data from January 4, 2000 to October 30, 2014. The result shows that the regime of low volatility persists with a leverage effect. We also observe that the performance of MRS-GARCH is superior to other GARCH models for in-sample fitting; in addition, it is also superior to other models for long-term forecasting in out-of-sample fitting. The MRS-GARCH model can be a good alternative to GARCH-type models because it can reflect financial market structural changes into modeling and volatility forecasting.
Capturing real-time daily information on food prices is invaluable to help policymakers and development organizations address food security problems and improve public welfare. This study analyses the possible use of large-scale online data, available due to growing Internet connectivity in developing countries, to provide updates on food security landscape. We conduct a case study of Indonesia to develop a time-series prediction model that nowcasts daily food prices for four types of food commodities that are essential in the region: beef, chicken, onion and chilli. By using Twitter price quotes, we demonstrate the capability of social data to function as an affordable and efficient proxy for traditional offline price statistics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.