• Title/Summary/Keyword: 일방향 슬래브

Search Result 35, Processing Time 0.024 seconds

A Parametric Study of Deflection Analysis of the Prestressed Concrete One-Way Slab for Serviceability Assessment (사용성 평가를 위한 프리스트레스트 콘크리트 일방향 슬래브의 처짐 변수 해석)

  • Park, Ha Eun;Kim, Min Sook;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.525-532
    • /
    • 2014
  • The purpose of this study is to analyze the deflection for serviceability assessment of the prestressed concrete one-way slab using finite element program. Proposed finite element analysis method was verified comparing with existing experimental results, and it showed a good agreement. Also, a parametric study has been conducted to analyze the influence of concrete compressive strength, eccentricity, live load, and tendon profile. The finite element analysis results were compared with hand calculation results. Deflections were decreased as the concrete compressive strength increases, eccentricity increases, and the live load decreases. The deflection of straight tendon was smallest. And regression analysis has been conducted to analyze the correlation between parameters and camber.

Investigation for the Efficiency in Flexural Design of CFRP Bar-Reinforced Concrete Slab (CFRP 보강근 보강 콘크리트 슬래브 휨설계의 효율성에 관한 연구)

  • Kang, Su-Tae;Yang, Eun-Ik;Choi, Myung-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.81-90
    • /
    • 2022
  • In this study, for one-way concrete slabs, the flexural strength, deflection, and crack width according to the amount of reinforcing bars were compared for the cases of using steel reinforcing bars and CFRP reinforcing bars. Critical performance dominating the flexural design was investigated and how to design the CFRP-reinforced concrete slab with efficiency was also discussed. It was found that CFRP-reinforced concrete slabs could achieve greater design flexural strength with the same amount of reinforcing bars compared to those using steel rebar, while deflection and crack width were relatively much larger. In concrete slabs using CFRP reinforcing bars, it was confirmed that the maximum crack width acts as a dominant factor in the design. For more efficient flexural design, it is necessary to mitigate the allowable crack width to 0.7 mm and to apply smaller diameter reinforcing bars to control the crack width.

Flexural Capacities of Hollow slab with Donut type Hollow Sphere (도넛형 중공형성체를 사용한 중공슬래브의 휨성능 평가)

  • Kim, Byoung-Hoon;Chung, Joo-Hong;Choi, Hyun-Ki;Lee, Seung-Chang;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.31-32
    • /
    • 2010
  • This paper presents the flexural capacities of one-way hollow slab with donut type hollow sphere. According to analytical studies, the hollow slab with donut type hollow sphere had good flexural capacities such as strength, stiffness and deflection. To verify the flexural capacities of this hollow slab, flexural tests were performed on the one-way hollow slabs.

  • PDF

Flexural Capacities of Hollow slab with Material properties (중공형성체 재료에 따른 중공슬래브의 휨성능 평가)

  • Chung, Joo-Hong;Kim, Byoung-Hoon;Choi, Hyun-Ki;Lee, Seung-Chang;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.69-70
    • /
    • 2010
  • This paper presents the flexural capacities of one-way hollow slab with materials. To verify the flexural capacities of this hollow slab, flexural tests were performed on the one-way hollow slabs. The test parameters included two different materials of plastic balls. The material parameters were general plastic and glass fiber plastic.

  • PDF

Behaviour of One-Way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars (FRP 보강근을 주근으로 사용한 일방향 콘크리트 슬래브의 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.763-771
    • /
    • 2007
  • Over the last few decades, many researches have been conducted in order to find solution to the problem of corrosion in steel reinforced concrete. As a result, methods such as the use of stainless steel bars, epoxy coatings, and concrete additives, etc., have been tried. While effective in some situations, such remedies may still be unable to completely eliminate the problems of steel corrosion. Fiber reinforced polymer (FRP) elements are appealing as reinforcement due to some material properties such as high tensile strength, low density, and noncorrosive. However, due to the generally lower modulus of elasticity of FRP in comparison with the steel and the linear behavior of FRP, certain aspects of the structural behavior of RC members reinforced with FRP may be substantially different from similar elements reinforced with steel reinforcement. This paper presents the flexural behavior of one-way concrete slabs reinforced with FRP bars. They were simply supported and tested in the laboratory under static loading conditions to investigate their crack pattern and width, deflections, strains and mode of failure. The experimental results shows that behavior of the FRP reinforced slabs was bilinearly elastic until failure. Also, the results show that the FRP overreinforced concrete beams in this study can be safe for design in terms of deformability.

An Experimental Study of Shear Capacity for One-way Concrete Slabs Reinforced with Amorphous Micro Steel Fibers (비정질 강섬유 보강 일방향 콘크리트 슬래브의 전단성능에 대한 실험적 연구)

  • Kim, Seon-Du;Choi, Kyoung-Kyu;Choi, Oan-Chul;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • In this study, one-way shear tests were performed to investigate the shear capacity of amorphous steel fiber-reinforced concrete slabs. Primary test parameters were the shear reinforcing method(Stirrups or amorphous steel fibers) and shear reinforcement ratio(0.25 and 0.5%). A series of four one-way slab specimens including a specimen without shear reinforcement and three specimens with shear reinforcements(stirrup, 0.25%, and 0.5% amorphous steel fibers) were tested. The test results showed that 0.25% amorphous steel fibers improved the shear capacity, but 0.5% amorphous steel fibers did not improve the shear capacity compared to the specimen with conventional shear reinforcement of 0.25%. Additional study is needed to understand the variation of shear capacity according to fiber volume fraction.

Analytical Study on Effect of Floor Slab for Progressive Collapse Resistant Capacity of Steel Moment Frames (철골모멘트골조의 연쇄붕괴저항성능에 대한 바닥슬래브의 효과에 관한 해석적 연구)

  • Kim, Seonwoong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • In this study, an improved energy-based nonlinear static analysis method are proposed to be used for more accurate evaluation of progressive collapse potential of steel moment frames by reflecting the contribution of a double-span floor slab. To this end, the behavior of the double-span floor slab was first investigated by performing material and geometric nonlinear finite element analysis. A simplified energy-absorbed analytical model by idealizing the deformed shape of the double-span floor slab was developed. It is shown that the proposed model can easily be utilized for modeling the axial tensile force and strain energy response of the double-span floor slab under the column-removal scenario.