• 제목/요약/키워드: 일반 상식 추론

검색결과 7건 처리시간 0.02초

SRLev-BIH: 한국어 일반 상식 추론 및 생성 능력 평가 지표 (SRLev-BIH: An Evaluation Metric for Korean Generative Commonsense Reasoning)

  • 서재형;장윤나;이재욱;문현석;어수경;박찬준;소아람;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.176-181
    • /
    • 2022
  • 일반 상식 추론 능력은 가장 사람다운 능력 중 하나로써, 인공지능 모델이 쉽게 모사하기 어려운 영역이다. 딥러닝 기반의 언어 모델은 여전히 일반 상식에 기반한 추론을 필요로 하는 분야에서 부족한 성능을 보인다. 특히, 한국어에서는 일반 상식 추론과 관련한 연구가 상당히 부족한 상황이다. 이러한 문제 완화를 위해 최근 생성 기반의 일반 상식 추론을 위한 한국어 데이터셋인 Korean CommonGen [1]이 발표되었다. 그러나, 해당 데이터셋의 평가 지표는 어휘 단계의 유사성과 중첩에 의존하는 한계를 지니며, 생성한 문장이 일반 상식에 부합한 문장인지 측정하기 어렵다. 따라서 본 논문은 한국어 일반 상식 추론 및 생성 능력에 대한 평가 지표를 개선하기 위해 문장 성분의 의미역과 자모의 형태 변화를 바탕으로 생성 결과를 평가하는 SRLev, 사람의 평가 결과를 학습한 BIH, 그리고 두 평가 지표의 장점을 결합한 SRLev-BIH를 제안한다.

  • PDF

거대언어모델을 위한 한국어 상식추론 기반 평가 (Korean Commonsense Reasoning Evaluation for Large Language Models)

  • 서재형;박찬준;문현석;어수경;소아람;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.162-167
    • /
    • 2023
  • 본 논문은 거대언어모델에 대한 한국어 상식추론 기반의 새로운 평가 방식을 제안한다. 제안하는 평가 방식은 한국어의 일반 상식을 기초로 삼으며, 이는 거대언어모델이 주어진 정보를 얼마나 잘 이해하고, 그에 부합하는 결과물을 생성할 수 있는지를 판단하기 위함이다. 기존의 한국어 상식추론 능력 평가로 사용하던 Korean-CommonGEN에서 언어 모델은 이미 높은 수준의 성능을 보이며, GPT-3와 같은 거대언어모델은 사람의 상한선을 넘어선 성능을 기록한다. 따라서, 기존의 평가 방식으로는 거대언어모델의 발전된 상식추론 능력을 정교하게 평가하기 어렵다. 더 나아가, 상식 추론 능력을 평가하는 과정에서 사회적 편견이나 환각 현상을 충분히 고려하지 못하고 있다. 본 연구의 평가 방법은 거대언어모델이 야기하는 문제점을 반영하여, 다가오는 거대언어모델 시대에 한국어 자연어 처리 연구가 지속적으로 발전할 수 있도록 하는 상식추론 벤치마크 구성 방식을 새롭게 제시한다.

  • PDF

Ko-ATOMIC 2.0: 한국어 상식 지식 그래프 구축 (Ko-ATOMIC 2.0: Constructing Commonsense Knowledge Graph in Korean)

  • 이재욱;서재형;정다현;박찬준;;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.319-323
    • /
    • 2023
  • 일반 상식 기반의 지식 그래프는 대규모 코퍼스에 포함되어 있는 일반 상식을 수집하고 구조화하는 지식의 표현 방법이다. 일반 상식 기반의 지식 그래프는 코퍼스 내에 포함되어 있는 다양한 일반 상식의 형태와 관계를 모델링하며, 주로 질의응답 시스템, 상식 추론 등의 자연어처리 하위 작업에 활용할 수 있다. 가장 잘 알려진 일반 상식 기반의 지식 그래프로는 ConceptNet [1], ATOMIC [2]이 있다. 하지만 한국어 기반의 일반 상식 기반의 지식 그래프에 대한 연구가 존재했지만, 자연어처리 태스크에 활용하기에는 충분하지 않다. 본 연구에서는 대규모 언어 모델과 프롬프트의 활용을 통해 한국어 일반 상식 기반의 지식 그래프를 효과적으로 구축하는 방법론을 제시한다. 또한, 제안하는 방법론으로 구축한 지식 그래프와 기존의 한국어 상식 그래프의 품질을 양적, 질적으로 검증한다.

  • PDF

KommonGen: 한국어 생성 모델의 상식 추론 평가 데이터셋 (KommonGen: A Dataset for Korean Generative Commonsense Reasoning Evaluation)

  • 서재형;박찬준;문현석;어수경;강명훈;이승훈;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.55-60
    • /
    • 2021
  • 최근 한국어에 대한 자연어 처리 연구는 딥러닝 기반의 자연어 이해 모델을 중심으로 각 모델의 성능에 대한 비교 분석과 평가가 활발하게 이루어지고 있다. 그러나 한국어 생성 모델에 대해서도 자연어 이해 영역의 하위 과제(e.g. 감정 분류, 문장 유사도 측정 등)에 대한 수행 능력만을 정량적으로 평가하여, 생성 모델의 한국어 문장 구성 능력이나 상식 추론 과정을 충분히 평가하지 못하고 있다. 또한 대부분의 생성 모델은 여전히 간단하고 일반적인 상식에 부합하는 자연스러운 문장을 생성하는 것에도 큰 어려움을 겪고 있기에 이를 해결하기 위한 개선 연구가 필요한 상황이다. 따라서 본 논문은 이러한 문제를 해결하기 위해 한국어 생성 모델이 일반 상식 추론 능력을 바탕으로 문장을 생성하도록 KommonGen 데이터셋을 제안한다. 그리고 KommonGen을 통해 한국어 생성 모델의 성능을 정량적으로 비교 분석할 수 있도록 평가 기준을 구성하고, 한국어 기반 자연어 생성 모델의 개선 방향을 제시하고자 한다.

  • PDF

AI에 적합한 일반상식 문장의 자동 생성을 위한 정량적, 정성적 연구 (CommonAI: Quantitative and qualitative analysis for automatic-generation of Commonsense Reasoning sentence suitable for AI)

  • 신현규;송영숙
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.153-159
    • /
    • 2022
  • 본 논문에서는 인공지능이 생성하는 일상 대화의 품질 향상을 위해 상식 추론을 정의하고 설문을 통해 정량적, 정성적 분석을 진행하였다. 정량적 평가에서는 주어진 문장이 에게 학습시키기에 적합한가'라는 수용성 판단을 요청한 질문에서 40대 이상의 연령이 20, 30대와 유의미한 차이를 보였다. 정성적 평가에서는 '보편적 사실 여부'를 AI 발화 기준의 주요한 지표로 보았다. 이어서 '챗봇' 대화의 품질에 대한 설문을 실시했다. 이를 통해 일상 대화를 사용한 챗봇의 대화 품질을 높이기 위해서는 먼저, 질문의 요구에 적절한 정보와 공감을 제공해야 하고 두 번째로 공감의 정도가 챗봇의 특성에 맞는 응답이어야 하며 세 번째로 대화의 차례에 따라 담화의 규칙을 지키면서 대화가 진행되어야 한다는 결론을 얻을 수 있었다. 이 세 가지 요건이 통합적으로 적용된 담화 설계를 통해 완전히 인공지능스러운 대화가 가능할 것으로 여겨진다.

  • PDF

콜라주 기법에 의한 비디오 생성을 위한 탐색적 실험 분석 (Exploratory Experiment Analysis for Video Generation by Collage Technique)

  • 조형래;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.123-126
    • /
    • 2020
  • 딥러닝이 정답을 찾아가는 연구과정이라면 미술은 정답이나 오답의 단정적 결과보다는 미추(아름다움과 추함)를 포함하는 과정적, 창조적 행위에 가깝다고 할 수 있다. 다시 말하면 미술은 0과 1로만 환원할 수 없는 세계를 기술하여 감동을 주는 유기적 규칙이 내재되어 있고 때로는 과학이 만들어낸 결론을 뒤집는 반상식적 추론을 하기도 한다. 그러므로 딥러닝은 예술적 방식을 통하여 과학의 상식적 추론과의 좋은 거리(Fine distance)를 유지할 필요성이 있는데, 이를 위해서 기존 딥러닝의 이미지 생성과 관련하여 Distance, Classification, Optimization 등의 문제를 미술 표현 기법과 목적이 담겨있는 창작자의 Statement 키워드와의 유사성과 차이점을 비교 분석할 필요가 있다고 생각한다. 시각적 표현과 관련된 딥러닝의 성능은 아직 사람의 표현능력에 못 미치고 있어 본 논문에서는 콜라주 기법에 의한 비디오 생성을 위한 탐색적 실험 분석을 목적으로 GAN을 활용한 콜라주 비디오를 제작하고 그 문제점과 개선점을 제안하고자 한다.

  • PDF

신경 텐서망을 이용한 컨셉넷 자동 확장 (Automatic Expansion of ConceptNet by Using Neural Tensor Networks)

  • 최용석;이경호;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.549-554
    • /
    • 2016
  • 컨셉넷은 일반상식을 노드(개념)와 에지(관계)로 표현해 놓은 그래프 형태의 지식 베이스이다. 완전한 지식 베이스를 구축하는 것은 매우 어려운 문제이기 때문에 지식 베이스는 미완결된 형태의 데이터를 담고 있는 경우가 많다. 불완전한 지식을 담고 있는 지식 베이스로부터의 추론 결과는 신뢰하기 어렵기 때문에 지식의 완결성을 높이기 위한 방법이 필요하다. 본 논문에서는 신경 텐서망을 이용하여 컨셉넷의 지식 미완결성 문제를 완화해 보고자 한다. 컨셉넷에서 추출한 사실주장(assertion)을 이용하여 신경 텐서망을 학습시킨다. 학습된 신경 텐서망은 두 개의 개념 정보를 입력으로 받고, 그 두 개념이 특정 관계로 연결될 수 있는지를 나타내는 점수값을 출력한다. 이와 같이 신경 텐서망은 노드들의 연결 차수(degree)를 높여, 컨셉넷의 완결성을 증대시킬 수 있다. 본 연구에서 학습시킨 신경 텐서망은 평가데이터에 대해서 약 87.7%의 정확도를 보였다. 또한 컨셉넷에 연결이 없는 노드 쌍에 대하여 85.01%의 정확도로 새로운 관계를 예측할 수 있었다.