The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.2
/
pp.169-174
/
2018
In general, the methods of the analysis of variance(ANOVA) for the continuous data and the chi-square test for the discrete data are used for statistical analysis of the effect and the association. In multidimensional data, analysis of hierarchical structure is required and statistical linear model is adopted. The structure of the linear model requires the normality of the data. A multidimensional categorical data analysis methods are used for causal relations, interactions, and correlation analysis. In this paper, Bayesian network model using probability distribution is proposed to reduce analysis procedure and analyze interactions and causal relationships in categorical data analysis.
This study analyzes the impact of Corporate Social Responsibility (CSR) activities on financial performances using Bayesian Network. The research tries to overcome the issues of the uniform assumption of a linear function between financial performance and CSR activities in multiple regression analysis widely used in previous studies. It is required to infer a causal relationship between activities of CSR which have an impact on the financial performances. Identifying the relationship would empower the firms to improve their financial performance by informing the decision makers about the different CSR activities that influence the financial performance of the firms. This research proposes General Bayesian Network (GBN) and presents Markov Blanket induced from GBN. It is empirically demonstrated that all the proposals presented in this study are statistically significant by the results of the research conducted by Korean Economic Justice Institute (KEJI) under Citizen's Coalition for Economic Justice (CCEJ) which investigated approximately 200 companies in Korea based on Korean Economic Justice Institute Index (KEJI index) from 2005 to 2011. The Bayesian Network to effectively infer the properties affecting financial performances through the probabilistic causal relationship. Moreover, I found that there is a causal relationship among CSR activities variable; that is Environment protection is related to Customer protection, Employee satisfaction, and firm size; Soundness is related to Total CSR Evaluation Score, Debt-Assets Ratio. Though the what-if analysis, I suggest to the sensitive factor among the explanatory variables.
One of the methods of securing the reliability of accounting information is maintaining high audit quality. The first step of improving audit quality is lowering audit engagement risks. Thus, this study analyzed the relationship between the characteristics of accounting firms and audit engagement risks based on the Bayesian Network. For this, Markov Blanket, the minimum explanatory variable set, which affects audit engagement risks, was presented, and based on the drawn causal relationship, sensitivity analysis was conducted to verify the characteristics of accounting firms, which affect audit engagement risks. The existing preceding research that used multiple regression analysis presumes the linearity between explanatory variables and dependent variables, so there was a limit in drawing the relationship between explanatory variables. Therefore, this study figured out the interdependence between variables using the General Bayesian Network and examined the impact that each variable has finally on audit engagement risks that affects the audit quality. The results of this study would greatly contribute to improving the efficiency of the supervisory task by allowing a supervisory institution to identify an accounting firms that does not manage audit engagement risks properly and to improve the supervision of the accounting firms in advance. In addition, this study will be used as a reference when a supervisory institution would improve the system related to audit quality by presenting the characteristics of accounting firms related to the audit quality.
Park, Seong-ho;Yu, Young-jung;Moon, Sang-ho;Kim, Young-ho
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.12
/
pp.2779-2784
/
2015
The prediction of the accurate traffic information can provide an optimal route from the place of departure to a destination, therefore, this makes it possible to obtain a saving of time and money. To predict traffic information, we use a Bayesian network method based on probability model in this paper. Existing researches predicting the traffic information based on a Bayesian network generally used to study the data for all time. In this paper, however, only data corresponding to same time and day of the week to predict selectively will be used for learning. In fact, the experiment was carried out for 14 links zone in Seoul, also, the accuracy of the prediction results of the two different methods should be tested with MAPE (Mean Absolute Percentage Error) which is commonly used. In view of MAPE, experimental results show that the proposed method may calculate traffic prediction value with a higher accuracy than the method used to learn the data for all time zones.
일반적으로 축구 비디오 데이터는 멀티모달과 멀티레이어 속성을 지닌다. 이러한 데이터를 다루기 적합한 모델은 동적 베이지안 네트워크(Dynamic Bayesian Network: DBN) 형태의 위계적 은닉 마르코프 모델(Hierarchical Hidden Markov Model: HHMM)이다. 이러한 HHMM 중 다중속성의 특징들이 서로 상호작용하는 PHHMM(Product Hierarchical Hidden Markov Model)이 있다. 본 논문에서는 PHHMM 을 축구 경기의 Play/Break 이벤트 검색 및 분석에 적용하였고 바람직한 결과를 얻었다.
Recently, diverse information which are location, call history, SMS history, photographs, and video can be collected constantly from mobile devices such as cellular phone, smart phone, and PDA. There are many researchers who study services for searching and abstraction of personal daily life with contextual information in mobile environment. In this paper, we introduce MyLifeBrowser which is developed in our previous work. Also, we explain LPS and correction of GPS coordinates as extensions of previous work and show LPS performance test and evaluate the performance of expanded keywords. MyLifeBrowser which provides searching personal information in mobile device and support of detecting related information according to a fragmentary keyword and common knowledge in ConceptNet. It supports the functionality of searching related locations using Bayesian network that is designed by the authors. In our experiment, we visualize real data through MyLifeBrowser and show the feasibility of LPS server and expanded keywords using both Bayesian network and ConceptNet.
Recently, we should control various devices such as TV, audio, DVD player, video player, and set-top box simultaneously to manipulate home theater system. To execute the function the user want in this situation, user should know functions and positions of the buttons in several remote controllers. Normally, people feel difficult due to these realistic problems. Besides, the number of the devices that we can control shall increase, and people will confuse more if the ubiquitous home environment is realized. Therefore, user adaptive interface that provides the summarized functions is required. Moreover there can be a lot of mobile and stationary controller devices in ubiquitous computing environment, so user interface should be adaptive in selecting the functions that user wants and in adjusting the features of UI to fit in specific controller. To implement the user and controller adaptive interface, we modeled the ubiquitous home environment and used modeled context and device information. We have used Bayesian network to get the degree of necessity in each situation. Behavior selection network uses predicted user situation and the degree of necessity, and it selects necessary functions in current situation. Selected functions are used to construct adaptive interface for each controller using presentation template. For experiments, we have implemented ubiquitous home environment and generated controller usage log in this environment. We have confirmed the BN predicted user requirements effectively as evaluating the inferred results of controller necessity based on generated scenario. Finally, comparing the adaptive home UI with the fixed one to 14 subjects, we confirmed that the generated adaptive UI was more useful for general tasks than fixed UI.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.12
no.1
/
pp.29-36
/
2012
In Wireless Sensor Network(WSN)s, the detection of precise location of each node is essential for utilizing sensing data acquired from sensor nodes effectively. Among various location methods, the received signal strength(RSS) based localization scheme is mostly preferable in many applications because it can be easily implemented without any additional hardware cost. Since a RSS-based localization scheme is mainly affected by radio channel or obstacles such as building and mountain between two nodes, the localization error can be inevitable. To enhance the accuracy of localization in RSS-based localization scheme, a number of RSS measurements are needed, which results in the energy consumption. In this paper, a RSS based localization using Bayesian Compressive Sensing(BSS) with path-loss exponent estimation is proposed to improve the accuracy of localization in the energy-efficient way. In the propose scheme, we can increase the adaptative, reliability and accuracy of localization by estimating the path-loss exponents between nodes, and further we can enhance the energy efficiency by the compressive sensing. Through the simulation, it is shown that the proposed scheme can enhance the location accuracy of multiple unknown nodes with fewer RSS measurements and is robust against the channel variation.
저출산 고령화 사회로의 진입은 대한민국뿐만 아니라 전 세계적으로 많은 사회 문제를 야기하고 있다. 그 중에서 고령 인구 증가로 인한 의료 수요 증가와 이를 뒷받침 할 의료인력 부족은 곧 다가올 사회문제이다. 4차 산업 혁명으로 인해 다양한 사회문제에 대한 혁신적인 해법들이 제시되고 있는데, 본 기고문에서는 다가올 고령화 사회에서 의료인력 부족 등에 의한 해결법으로 원격의료 지원을 위한 인공지능 활용을 다루고자 한다. 병 진단 및 예측을 위한 여러 가지 인공지능 알고리즘은 이미 많이 개발 되어 있으나, 일반적으로 딥러닝에 많이 쓰이는 인공신경망 구조인 합성곱 뉴럴네트워크(convolution neural network)나 기존 퍼셉트론(perceptron) 구조에서 벗어나 확률론적 인공신경망 중에 하나인 베이지안 뉴럴네트워크(Bayesian neural network)를 다루고자 한다. 그중에서 연산효율적이며 뉴로모픽 하드웨어로 구현 가능성이 높고 실제 진단 예측(diagnosis prediction) 문제 해결에 강점을 보이는 알고리즘으로써 naive Bayes classifer를 활용한 연구를 소개하고자 한다.
So, Byung-Jin;Kwon, Hyun-Han;Park, Sae-Hoon;Moon, Young-Il
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.386-386
/
2011
다양한 연구 분야에서 강수량, 온도, 습도, 일조량은 연구에 필요한 기후 인자로써 사용되어져 왔다. 외국의 경우 기후 인자들과의 관계를 도출해 내는 연구가 이루어 졌지만 국내의 경우는 이러한 연구가 이루어지지 않고 있다. 본 연구에서는 이러한 인자들과의 관계를 강수-온도-습도-일조량이 연동되어 모의되는 기법을 개발하고자 한다. 기존 국내외 연구결과들은 지수함수식의 형태를 가지는 모형을 이용하여 온도-일조량(radiation), 온도-습도, 습도-일조량, 온도와 강수-일조량과 습도를 개별적으로 추정하는 연구들이 있었다. 그러나 온도, 강수량, 습도, 일조량 등은 기상학적 관점에서 모두 연관성을 가지고 각 변량들에 영향을 주고 있다. 이러한 점에 착안하여 본 연구에서는 4가지 변량들이 가지는 관계를 규명하고 각 변량간의 상관관계뿐만 아니라 4가지 변량이 동시에 상관성을 갖도록 모형을 구축하고자 한다. 일반적으로 각 변량들 간의 확률적인 거동을 동시에 고려할 수 있는 Network 모형이 많이 이용된다. 본 연구에서는 Bayesian Network 모형을 활용하여 4가지 변량 간에 Bayesian Network를 구성하고, 통계적 모형으로 발전시켜 기후변화 연구에 활용하고자 한다. 제안된 방법론에 대한 적합성을 평가하기 위해, 서울지점을 대상으로 온도, 강수, 습도, 일조량 값을 이용하였다. 기후변화에 따른 수문순환모형에서 이들 4가지 변량은 기본 입력자료로 이용되고 있으나, 현재까지는 강수 및 온도를 사용한 모형 개발이 이루어지고 있다. 이러한 점에서 본 연구의 결과는 기후변화에 따른 물순환 변동성을 평가하는 기본 자료로서 활용될 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.