• 제목/요약/키워드: 일반화된 라소

검색결과 2건 처리시간 0.014초

Generalized Lasso를 이용한 공간 군집 기법 (Spatial Clustering Method Via Generalized Lasso)

  • 송은정;최호식;황승식;이우주
    • 응용통계연구
    • /
    • 제27권4호
    • /
    • pp.561-575
    • /
    • 2014
  • 본 논문에서는 질병과 연관성을 갖는 국소 공간 군집을 검출할 수 있는 벌칙 가능도 방법을 제안한다. 핵심적인 계산 알고리즘은 Tibshirani와 Taylor (2011)에 의해 제안된 일반화된 라소(generalized lasso)에 기반한다. 제안된 방법은 현재 널리 사용되고 있는 국소 공간 군집 방법인 Kulldorff의 기법에 비해 두가지 주요 장점을 가지고 있다. 첫째로, 제안된 방법은 사전에 군집의 크기를 미리 결정해 줄 필요가 없다. 둘째로, 임의의 설명변수를 공간 군집 탐색 기법에 고려할 수 있기 때문에 인구학적인 변수를 보정하였을 때 나타나는 국소 공간 군집을 찾는 것이 가능하다. 우리는 제안된 방법을 서울시 결핵 자료를 사용하여 설명한다.

희소 투영행렬 획득을 위한 RSR 개선 방법론 (An Improved RSR Method to Obtain the Sparse Projection Matrix)

  • 안정호
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권4호
    • /
    • pp.605-613
    • /
    • 2015
  • 본 논문은 패턴인식에서 자주 사용되는 투영행렬을 희소화하는 문제를 다룬다. 최근 임베디드 시스템이 널리 사용됨에 따라 탑재되는 프로그램의 용량이 제한받는 경우가 빈번히 발생한다. 개발된 프로그램은 상수 데이터를 포함하는 경우가 많다. 예를 들어, 얼굴인식과 같은 패턴인식 프로그램의 경우 고차원 벡터를 저차원 벡터로 차원을 축소하는 투영행렬을 사용하는 경우가 많다. 인식성능 향상을 위해 영상으로부터 매우 높은 차원의 고차원 특징벡터를 추출하는 경우 투영행렬의 사이즈는 매우 크다. 최근 라소 회귀분석 방법을 이용한 RSR(rotated sparse regression) 방법론[1]이 제안되었다. 이 방법론은 여러 실험을 통해 희소행렬을 구하는 가장 우수한 알고리즘 중 하나로 평가받고 있다. 우리는 본 논문에서 RSR을 개선할 수 있는 세 가지 방법론을 제안한다. 즉, 학습데이터에서 이상치를 제거하여 일반화 성능을 높이는 방법, 학습데이터를 랜덤 샘플링하여 희소율을 높이는 방법, RSR의 목적함수에 엘라스틱 넷 회귀분석의 패널티 항을 사용한 E-RSR(elastic net-RSR) 방법을 제안한다. 우리는 실험을 통해 제안한 방법론이 인식률을 희생하지 않으며 희소율을 크게 증가시킴으로써 기존 RSR 방법론을 개선할 수 있음을 보였다.