• Title/Summary/Keyword: 일반물리학

Search Result 90, Processing Time 0.026 seconds

Chemical Composition in Relation to Quality Evaluation of Korean Honey (한국산꿀의 품질특성)

  • Chung, Won-Chul;Kim, Man-Wook;Song, Ki-Joon;Choi, Eon-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.17-22
    • /
    • 1984
  • Quality of five kinds of honey were evaluated. Honey had total soluble sugar above 96% on the dry weight and a little amount of protein. The mineral composition varied with the kinds of honey, but all tested honey showed the highest content of K and Na, and a considerable amount of Fe, Mg, Ca, Zn, and P. Free sugars were mainly composed of fructose and glucose. The fructose/glucose ratio of honey was 1.0-1.39. Buckwheat honey showed comparatively higher content of sucrose and maltose. All tested honey were analyzed to give pH 3.23-4.32, total acid 10.5-23.9 meq/kg, hydroxymethylfurfural 0.58-21.31 mg/kg, diastatic activity 13.95-36.59.

  • PDF

A Study of High School Students' and Science Teachers' Understanding of Ideal Conditions Involved in the Theoretical Explanation and Experiment in Physics: Part IV- Focused on the Ideal Condition Involved in the Experiment - (물리학에서 이론적 설명과 실험에 포함된 이상조건에 대한 고등학생과 과학교사의 이해 조사 IV-실험에 포함된 이상조건을 중심으로-)

  • Park, Jong-Won;Chung, Byung-Hoon;Kwon, Sung-Gi;Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.1
    • /
    • pp.78-90
    • /
    • 1999
  • This study investigated the high school students' and science teachers' understanding of idealization involved in the physics experiment. Major research questions are as follows: (1) what kind of ideal conditions do subjects identify from the presented experimental context? (2) do subjects think how well ideal conditions are satisfied with the experiment? (3) how well do subjects expect the effect of idealization on the experimental result? (3) what kind of view point do science teachers have about the ideal condition involved in the experiment? A total of 85 subjects were given 6 questions related with the research questions I. 2. and 3. with simple experiment about the brightness of the bulbs connected with parallel to the battery. And another 4 questions for the forth research question were given to 42 science teachers. Subjects' responses were summarized and used to draw the implications for the teaching of physics experiment.

  • PDF

Design for Radiotherapy Room with High Density Shielding Block (고 강도 차폐벽돌을 이용한 방사선치료실의 차폐설계)

  • Suh Chang Ok;Kim Gwi Eon;Chu Sung Sil
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.247-254
    • /
    • 2004
  • According to developing high energy linear accelerators and treatment methods, like (3 dimensional conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), many radiotherapy centers are replacing older linear accelerators with new higher technical machines. This often presents a shielding problem as the designed shield for the existing rooms is not adequate for the higher technical machines. Additional shielding in limited existing space becomes necessary. We are replacing older brachytherapy room with new higher technical linear accelerator for IMRT. This room is not adequate for the IMRT machine without additional shielding design. The logical development of optimum structural shielding designs with concrete and high density shielding blocks are presented. We obtained following results by comparison between the pre-calculating values and actual survey of completed LINAC installation. High density shielding blocks have more powerful radiation protection about 2 times.

  • PDF

Compressed-sensing (CS)-based Image Deblurring Scheme with a Total Variation Regularization Penalty for Improving Image Characteristics in Digital Tomosynthesis (DTS) (디지털 단층합성 X-선 영상의 화질개선을 위한 TV-압축센싱 기반 영상복원기법 연구)

  • Je, Uikyu;Kim, Kyuseok;Cho, Hyosung;Kim, Guna;Park, Soyoung;Lim, Hyunwoo;Park, Chulkyu;Park, Yeonok
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In this work, we considered a compressed-sensing (CS)-based image deblurring scheme with a total-variation (TV) regularization penalty for improving image characteristics in digital tomosynthesis (DTS). We implemented the proposed image deblurring algorithm and performed a systematic simulation to demonstrate its viability. We also performed an experiment by using a table-top setup which consists of an x-ray tube operated at $90kV_p$, 6 mAs and a CMOS-type flat-panel detector having a $198-{\mu}m$ pixel resolution. In the both simulation and experiment, 51 projection images were taken with a tomographic angle range of ${\theta}=60^{\circ}$ and an angle step of ${\Delta}{\theta}=1.2^{\circ}$ and then deblurred by using the proposed deblurring algorithm before performing the common filtered-backprojection (FBP)-based DTS reconstruction. According to our results, the image sharpness of the recovered x-ray images and the reconstructed DTS images were significantly improved and the cross-plane spatial resolution in DTS was also improved by a factor of about 1.4. Thus the proposed deblurring scheme appears to be effective for the blurring problems in both conventional radiography and DTS and is applicable to improve the present image characteristics.

DEVELOPMENT OF MECHANICS CAI PROGRAM FOR UNIVERSITY SCIENCE STUDENT (대학일반물리학(大學一般物理學) 력학단원(力學單元) CAI 프로그램의 개발(開發))

  • Kim, Chang-Sik
    • Journal of The Korean Association For Science Education
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 1990
  • Mechanical CAI Program was developed for university science student The program was mainly aimed for individual study. The program was written in BASIC and construct 130s flams. This project was supproted by Ministry of Education research fund. Summary of this study is as follows. 1. The program consisted of main, pretest, tutorial, final, and several other routines for program control. 2. This program written in BASIC. 3. 20 flames for pretest routine, 90 flames for tutorial routine, 20 flames for final test routine were developed. 4. The expected rate of achivement for final test was set 80%. 5. Average mark of final test was 70.2 point through the all course of program. This means that program was constructed of well.

  • PDF

Exploration of the Status of Course Completion and Ways to Raise Selection Rates of General Elective Courses in the 2015 Revised Science Curriculum (2015 개정 과학과 일반선택과목의 수강 현황 및 선택률 제고 방안 탐색)

  • Lee, Il;Kwak, Youngsun
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.217-226
    • /
    • 2020
  • The purpose of this research is to draw suggestions on the settling of the 2015 revised curriculum and the direction of science curriculum improvement by identifying the current status of science general elective courses for high school sophomores, and examining teachers' perception. To this end, with 12 city and provincial education offices' cooperation, we analyzed the status of science elective subjects that freshmen took in 2018 by school year, school type and region. In addition, in-depth interviews were conducted with nine science teachers of the focus group to discuss ways to improve curriculum operation and implementation of science general elective courses, and ways to raise the selection rate. The number of science general elective courses for high school students in 12 municipal and provincial education offices was confirmed to be 163,710 for Physics I, 216,754 for Chemistry I, 290,736 for Bioscience I, and 200,861 for Earth Science I. By school type, autonomous high schools have the highest completion rate, while specialized schools and vocational schools have very low rates. Units completed per semester for general elective courses were mostly three units (61.5%) and two units (28.7%). High school science teachers suggested reconstruction of three-unit elective courses that can be completed in one semester, content development focused on competences rather than knowledge, and the need for a teacher community to improve teachers' teaching competences. Based on the results of the research, ways to operate high school science elective curriculum in preparation for the high school credit system were suggested.

Acquisition of High Resolution Images and its Application using Synchrotron Radiation Imaging System (방사광 X-선을 이용한 고해상도 영상획득과 응용)

  • 홍순일;김희중;정해조;홍진오;정하규;김동욱;제정호;김보라;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • Synchrotron radiation (SR) has several advantages over convetional x-rays, including its phase, collimation, and high flux. A synchrotron radiation beamline 5C1 at Pohang Light Source (PLS) was recently built for imaging applications. We have shown that a SR imaging system is useful in imaging microscopic structures. SR with broad-band energy spectrum were adjusted to an object by Si wafers and their energy were approximately ranging from 6 keV to 30 keV. SR were passed through an object and finally transformed into visible lights by CdWO$_4$ scintillator screen. The visible lights which were reflected at an angle of 90 degrees by gold plated mirror were detected by a CCD camera and the image data were acquired using image acquisition system. A high-resolution phantom, capacitor, adult tooth, child tooth, cancerous breast tissue, and mouse lumbar vertebra were imaged with SR imaging system. The Objects were rotated within the field of view of the CCD detector, and their projection image data were obtained at 250 steps over 180 degrees rotation. Image reconstructions were carried out in a PC by using IDLTM(Research systems, Inc., US) program. The spatial resolution of the images acquired by the SR imaging system was measured with a high-resolution chart manufactured for several micrometer resolution. The specimens were also imaged with conventional x-ray radiography system to compare the image quality of radiography obtained with the SR imaging system. The results showed more structural details and high contrast images with SR imaging system than conventional x-ray radiography system. The SR imaging system may have a potential for imaging in biological researches, material applications, and clinical radiography.

  • PDF

Effective Detective Quantum Efficiency (eDQE) Evaluation for the Influence of Focal Spot Size and Magnification on the Digital Radiography System (X-선관 초점 크기와 확대도에 따른 디지털 일반촬영 시스템의 유효검출양자효율 평가)

  • Kim, Ye-Seul;Park, Hye-Suk;Park, Su-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The magnification technique has recently become popular in bone radiography, mammography and other diagnostic examination. However, because of the finite size of X-ray focal spot, the magnification influences various imaging properties with resolution, noise and contrast. The purpose of study is to investigate the influence of magnification and focal spot size on digital imaging system using eDQE (effective detective quantum efficiency). Effective DQE is a metric reflecting overall system response including focal spot blur, magnification, scatter and grid response. The adult chest phantom employed in the Food and Drug Administration (FDA) was used to derive eDQE from eMTF (effective modulation transfer function), eNPS (effective noise power spectrum), scatter fraction and transmission fraction. According to results, spatial frequencies that eMTF is 10% with the magnification factor of 1.2, 1.4, 1.6, 1.8 and 2.0 are 2.76, 2.21, 1.78, 1.49 and 1.26 lp/mm respectively using small focal spot. The spatial frequencies that eMTF is 10% with the magnification factor of 1.2, 1.4, 1.6, 1.8 and 2.0 are 2.21, 1.66, 1.25, 0.93 and 0.73 lp/mm respectively using large focal spot. The eMTFs and eDQEs decreases with increasing magnification factor. Although there are no significant differences with focal spot size on eDQE (0), the eDQEs drops more sharply with large focal spot than small focal spot. The magnification imaging can enlarge the small size lesion and improve the contrast due to decrease of effective noise and scatter with air-gap effect. The enlargement of the image size can be helpful for visual detection of small image. However, focal spot blurring caused by finite size of focal spot shows more significant impact on spatial resolution than the improvement of other metrics resulted by magnification effect. Based on these results, appropriate magnification factor and focal spot size should be established to perform magnification imaging with digital radiography system.

Nationwise Survey of the X-ray Beam Collimator Utilization in General Diagnostic Radiograph (진단방사선 일반촬영에서의 X-ray Beam Collimator 사용 전국 실태조사)

  • Kim, Jee Hye;Sung, Dong-Wook;Kim, Jeong Wook;Shin, Jin Ho;Lee, Soon Keun;Jung, Kyung Il;Uhm, Jong Kwan;Lee, Ki Nam;Seong, Ho Jin;Kim, Youn Hyun;Kim, Hyeog Ju
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2013
  • Due to the introduction of CR and DR, it has been neglected the use of the X-ray beam collimator and field size. This study examines nationwide survey of the proper use of collimator and field size by area in a specific field of plain radiography and the current status. Authors emphasized the need for the field size criteria, and propose a standard reference field size in each specific radiologic examination. Total 333 medical institutions (included in Seoul, Gyeonggi-do, Jeolla, Chungcheong, Gangwon-do, Busan area), were investigated in relation to the status of the X-ray beam collimation field size, type specific inspection areas, medical facilities, and image analyses by type to figure out whether they use the adjustment of image field to the specific examination. To assess the awareness and the impact of radiation exposure to the collimation adjustable, 168 radiographers who was working in 10 general hospitals, 10 hospitals, and 10 clinics, were surveyed how they haver adjusted the actual field size. We examine that 61.3% of medical institutions used the "Proper collimation" and only 49.9% of them employed proper one in lumbar spine densely crowded by major organs. 69% among general hospitals, and 65% among hospitals using DR system were using proper collimation. Radiographers recognized that proper adjustment of collimation could reduce the harmful radiation dose on patients. In the survey, 97.6% of respondents were aware of this fact, but only 83.3% of respondents did the adjustment of the size of the collimation field. The using of proper collimation field was low in the nationwide survey, so the effort to reduce the radiation dose on the patients is urgently needed. A unified standard for the field accompanied by thorough education should be needed.

Evaluation of Present Curriculum for Devlopment of Dept. of Radiological Science Curriculum (방사선학과 교육과정 개선을 위한 현 교육과정 평가)

  • Kang, Se-Sik;Kim, Chang-Soo;Choi, Seok-Yoon;Ko, Seong-Jin;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.242-251
    • /
    • 2011
  • A curriculum of study demands a change as period of time and society evolve. Therefore, at this point where changes are required, this study is to analyze and evaluate the curriculums which will enhance and improve current studies as a preceding stage. The research was based on the survey by groups of education experts and 19 universities with current curriculum of study in radiologic science, and their references. The study was focused on the scope of work by radiologic technologist, change of college systems, academic research about radiologic science, and the improvement and the future of radiologic science field in perspective to globalization and the digital era. In terms of work scope, angiography and interventional radiology at 6 to 8 schools, fluoroscopy at 4 schools, ultrasound and practices at 6 schools, magnetic resonance image at 2 schools were found to be unestablished. The basic medical subjects, humuan physiology, human anatomy and practices, medical terminology courses were set up at most schools; however, pathology at 5 schools, image anatomy at 6 schools, clinical medicine at 11 schools were yet opened. Among the basic science and engineering subjects, general biology and its practices at 11 schools, general physics and its practices at 14 schools, and general chemistry and its practices at 8 schools were established which is about a half from a total number of schools. Only 4-5 schools established digital subjects such as, health computer, computer programming, PACS which are the basic major subjects. In order to provide academic improvement in radiologic science, digitalized education and globalization, and basis for future-oriented education for the field of radiologic science, including expanded scope of work, it is acknowledged that curriculums that are opened and run at each school need to be standardized. Therefore, the need for introduction of certificate for the radiologic science education courses are suggested.