• Title/Summary/Keyword: 일라이트-스멕타이트 혼합층광물

Search Result 23, Processing Time 0.022 seconds

Mineralogy of Clay Minerals from the Sarisan Mine, Korea (麗州 싸리산 鑛山에서 産出하는 粘土鑛物에 對한 鑛物學的 硏究)

  • Kim, Geon-Young;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.79-92
    • /
    • 1992
  • The Sarisan clay deposits of hydrothermal origin are found in the intensely weathered wto-mica granite in Yeoju area. The major clay minerals of the Sarisan mine are illite and montmorillonite with minor disordered kaolinite, vermiculite, and some interstratified mineral. Clay minerals were studied using various methods including X-ray diffraction, infrared absorption spectroscopy, electron microscopy, and thermal and chemical analyses. Illites occur as discrete illite or highly illitic interstratified mineral. They are of 1M and $2M_1$ polytypes and characterized by a low lattice charge (1.768-0.926 per unit formula), low $K^+$ content (0.741-0.902 per unit formula), and high Si/Al ratio (1.154-1.293) as compared with muscovite. Montmorillonites are highly negative charged and occasionally random-interstratified as I/S with 80-98% smectite. Hydrothermal alteration is more important than later weathering alteration for the formation of illite and montmorillonite clay minerals. The hydrothermal alteration took place through two stages; the formation of illite in the early stage and the formation of montmorillonite in the late stage. Disordered kaolinite and vermiculite are the weathering products of plagioclase and biotite, respectively.

  • PDF

Geochemical Variation of Authigenic Glauconite from Continental Shelf of the Yellow Sea, off the SW Korea (한반도 남서부, 황해 대륙붕에서 자생하는 해록석의 지구화학적 변화)

  • Lee, Chan Hee;Lee, Sung-Rock;Lee, Chi-Won;Choi, Suck-Won
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.303-312
    • /
    • 1997
  • The massive, fractured and porous-type of glauconite, which is subdivided by surface morphology, occur in subtidal sand and semiconsolidated intertidal sand/mud from continental shelf of the southeastern Yellow Sea. This area is presumed to be a part of Holocene transgressive tidal systems tract. The glauconite, pellet-like grains with diameter of 0.1 to 1 mm, is scattered in surface sand sediments. Results of X-ray diffraction data of the minerals are monoclinic with $a=5.242{\AA}$, $b=9.059{\AA}$, $c=10.163{\AA}$, ${\beta}=100.5^{\circ}$, $V=474.53{\AA}^3$. Thermal treatments on the oriented glauconite increase the X-ray diffraction intensity near $10{\AA}$ (001), suggesting the presence of some expandable layers. Specific gravity of the glauconite is $2.60{\pm}0.45gm/cc$ on the basis of chemical composition and unit-cell dimensions. Based on $O_{10}(OH)_2$, chemical composition of glauconites, octahedral Fe content ranges from 1.19 to 2.06 atoms, corresponding octahedral AI is 0.18 to 0.76 atoms, which progressively substitute Fe for AI with increasing from porous to massive-type. The Mg content ranges from 0.35 to 0.54 atoms, and shows higher with increasing Al contents. A systematic increase of interlayer K from 0.34 to 0.71 is also observed with apparent increases from porous to massive-type, and related to a proportion of expandable layers. The clay preserved in glauconite, which is recognized as ordered/disordered (massive to fractured-type). The interstratified illite/smectite (porous-type), contains 7 to 27 % expandable layers. The glauconite seems to originate from post depositional authigenic growth in reducing environments promoted by the dissolution of clay minerals and biogenic debris.

  • PDF

Geologic, Fluid Inclusion, and Sulfur Isotopic Studies of Hydrothermal Deposit in the Tanggueng District, West Java, Indonesia (인도네시아 서부자바 땅긍(Tanggueng)지역 열수광상의 지질, 유체포유물 및 황동위원소 연구)

  • Jae-Ho Lee;In-Joon Kim
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.321-328
    • /
    • 2003
  • The epithermal gold and base metal deposit of the Tanggeung district of West Java consists of four major veins(Celak, Cigodobras, Cilangkap and Pasirbedil) with NS to N10$^{\circ}$∼20$^{\circ}$E and N75$^{\circ}$W strikes. The veins occur within fractures cutting the crystal and lithic tuff of Jampang Formation(Oligo-Miocene) in and around the Mt. Subang of the western Java, Indonesia. The ore mineralization is characterized by the occurrence of pyrite, sphalerite, galena, chalcopyrite, and small amounts of bornite and Fe-oxides. Hydrothermal alteration, associated with the mineralization, was dominantly silicified and enveloped by the phyllitic(sericitic), argillic and propylitic alteration containing the disseminated pyrite. Gangue minerals consist of interstratified smectite-illite, chlorite, sericite, and minor kaolinite. The presence of vapor-rich fluid inclusions in quartz veins suggests that boiling occurred locally throughout ore deposition. Fluid inclusion studies suggest that the ore fluid evolved from initial high temperatures(〓34$0^{\circ}C$) to later lower temperatures(〓19$0^{\circ}C$). Salinities range from 0.0 to 8.3 wt percent NaCl equiv. The relatively high increase in salinity(up to 8.3 wt percent NaCl equiv) might be explained by a local boiling and by a participation of magmatic fluids, supported by the sulfur isotope results. Evidence of fluid boiling suggests that the pressure decreased from 200 bars to 120 bars. This corresponds to the depths of approximately 750 to 1,200 m in a hydrothermal system that changed from lithostatic to hydrostatic conditions. Using homogenization temperatures and paragenetic constraints, the calculated $\delta$$^{34}$ S values of $H_2S$ in ore fluid are -0.2 to 1.8 permil close to the 0 permil isotopic value of magmatic sulfur.