• 제목/요약/키워드: 일괄 학습 방법

검색결과 25건 처리시간 0.022초

대용량 데이터를 위한 전역적 범주화를 이용한 결정 트리의 순차적 생성 (Incremental Generation of A Decision Tree Using Global Discretization For Large Data)

  • 한경식;이수원
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.487-498
    • /
    • 2005
  • 최근 들어, 대용량의 데이터를 처리할 수 있는 트리 생성 방법에 많은 관심이 집중되고 있다 그러나 대용량 데이터를 위한 대부분의 알고리즘은 일괄처리 방식으로 데이터를 처리하기 때문에 새로운 데이터가 추가되면 이 데이터를 반영한 결정 트리를 생성하기 위해 처음부터 트리를 다시 생성해야 하다. 이러한 재생성에 따른 비용문제에 보다 효율적인 접근 방법은 결정 트리를 순차적으로 생성하는 접근 방법이다. 대표적인 알고리즘으로 BOAT와 ITI를 들 수 있으며 이들 알고리즘은 수치형 데이터 처리를 위해 지역적 범주화를 이용한다. 그러나 범주화는 정렬된 형태의 수치형 데이터를 요구하기 때문에 대용량 데이터를 처리해야하는 상황에서 전체 데이터에 대해 한번만 정렬을 수행하는 전역적 범주화 기법이 모든 노드에서 매번 정렬을 수행하는 지역적 범주화보다 적합하다. 본 논문은 수치형 데이터 처리를 위해 전역적 범주화를 이용하여 생성된 트리를 효율적으로 재생성하는 순차적 트리 생성 방법을 제안한다. 새로운 데이터가 추가될 경우, 전역적 범주화에 기반 한 트리를 순차적으로 생성하기 위해서는 첫째, 이 새로운 데이터가 반영된 범주를 재생성해야 하며, 둘째, 범주 변화에 맞게 트리의 구조를 변화시켜야한다. 본 논문에서는 효율적인 범주 재생성을 위해 샘플 분할 포인트를 추출하고 이로부터 범주화를 수행하는 기법을 제안하며 범주 변화에 맞는 트리 구조 변화를 위해 신뢰구간과 트리 재구조화기법을 이용한다. 본 논문에서 피플 데이터베이스를 이용하여 기존의 지역적 범주화를 이용한 경우와 비교 실험하였다.

형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지 (Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images)

  • 김휘송;김덕진;김준우
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.793-810
    • /
    • 2022
  • 실시간 범람 모니터링을 위해 인공위성 SAR영상을 활용하는 수체탐지에 대한 필요성이 대두되었다. 주야와 기상에 상관없이 주기적으로 촬영 가능한 인공위성 SAR 영상은 육지와 물의 영상학적 특징이 달라 수체탐지에 적합하나, 스페클 노이즈와 영상별 상이한 밝기 값 등의 한계를 내포하여 다양한 시기에 촬영된 영상에 일괄적으로 적용 가능한 수체탐지 알고리즘 개발이 쉽지 않다. 이를 위해 본 연구에서는 Convolutional Neural Networks (CNN)기반 모델인 U-Net 아키텍처에 레이어의 조합인 모듈을 추가하여 별도의 전처리 없이 수체탐지의 정확도 향상 방법을 제시하였다. 풀링 레이어의 조합을 활용하여 형태학적 연산처리 효과를 제공하는 Morphology Module과 전통적인 경계탐지 알고리즘의 가중치를 대입한 컨볼루션 레이어를 사용하여 경계 학습을 강화시키는 Edge-enhanced Module의 다양한 버전을 테스트하여, 최적의 모듈 구성을 도출하였다. 최적의 모듈 버전으로 판단된 min-pooling과 max-pooling이 연속으로 이어진 레이어와 min-pooling로 구성된 Morphology 모듈과 샤를(Scharr) 필터를 적용한 Edge-enhanced 모듈의 산출물을 U-Net 모델의 conv 9에 입력자료로 추가하였을 때, 정량적으로 9.81%의 F1-score 향상을 보여주었으며, 기존의 U-Net 모델이 탐지하지 못한 작은 수체와 경계선을 보다 세밀하게 탐지할 수 있는 성능을 정성적 평가를 통해 확인하였다.

위성정보에 의한 강우예측과 홍수유출 및 범람 연계 해석 (I): 이론 및 모형의 개발 (Rainfall Forecasting Using Satellite Information and Integrated Flood Runoff and Inundation Analysis (I): Theory and Development of Model)

  • 최혁준;한건연;김광섭
    • 대한토목학회논문집
    • /
    • 제26권6B호
    • /
    • pp.597-603
    • /
    • 2006
  • 본 연구의 목적은 인공위성 자료와 지상의 관측자료간의 비선형 특성을 가장 잘 반영할 수 있는 신경망 모형을 이용하여 단시간 강우량 정보를 사전에 예측하여, 하천제방의 붕괴로 인한 상습 침수지역에서의 홍수범람 양상을 실시간으로 예측함으로써 홍수재해로부터의 피해를 최소화시키는데 있다. 강우예측 신경망 모형은 현재의 대기상태를 나타내는 인공위성 자료와 실시간으로 전송되는 자동기상관측소 자료를 입력자료로 하여 현재부터 3시간 및 6시간 선행시간까지의 면적평균강우량을 예측할 수 있도록 구성하였다. 신경망 모형의 구조는 입력층과 출력층 사이에 하나의 은닉층이 존재하는 다층 신경망으로 구성하였으며, 학습단계에서는 오류 역전파 알고리듬 학습방법 중 모멘텀법을 사용하였다. 예측된 면적평균강우량으로부터 홍수량을 산정하고, 이를 이용하여 하천의 제방붕괴로 인한 제내지에서의 범람양상을 예측할 수 있도록 1차원 흐름모형과 연계한 동역학적 홍수범람 모형을 개발하였다. 개발된 홍수범람 모형은 본류와 지류의 여러 지점에서 제방이 붕괴될 경우, 하도의 홍수위 및 제내지에서의 침수위와 침수면적이 일괄적으로 모의될 수 있도록 구성하였다.

비정형 데이터와 딥러닝을 활용한 내수침수 탐지기술 개발 (Development of a method for urban flooding detection using unstructured data and deep learing)

  • 이하늘;김형수;김수전;김동현;김종성
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1233-1242
    • /
    • 2021
  • 본 연구에서는 비정형 데이터인 사진자료를 이용하여 침수의 발생여부를 판단하는 모델을 개발하였다. 침수분류를 모델 개발을 위하여 CNN기반의 VGG16, VGG19을 이용하였다. 모델을 개발하기 위하여 침수사진과 침수가 발생하지 않은 사진을 웹크롤링 방법을 이용하여 사진을 수집하였다. 웹크롤링 방법을 이용하여 수집한 데이터는 노이즈 데이터가 포함되어 있기 때문에 1차적으로 본 연구와 상관없는 데이터는 소거하였으며, 2차적으로 모델 적용을 위하여 224 × 224로 사진 사이즈를 일괄 변경하였다. 또한 사진의 다양성을 위해서 사진의 각도를 변환하여 이미지 증식을 수행하였으며. 최종적으로 침수사진 2,500장과 침수가 발생하지 않은 사진 2,500장을 이용하여 학습을 수행하였다. 모델 평가결과 모델의 평균 분류성능은 97%로 나타났으며. 향후 본 연구결과를 통하여 개발된 모델을 CCTV관제센터 시스템에 탑재한다면 신속하게 침수피해에 대한 대처가 이루어 질 수 있을 것이라 판단된다.

한국과 미국 응급구조 학생간에 전문심장구조술 시뮬레이션 시험 (ACLS Simulation Examination between Korean and American Paramedic students)

  • ;김태민
    • 한국응급구조학회지
    • /
    • 제13권3호
    • /
    • pp.71-76
    • /
    • 2009
  • 서론(Introduction) : 의학 시뮬레이션(medical simulation)은 교육생 학습과정에서 내재된 위험이 환자에게 가해짐 없이 교육생이 실제적인 환자 상황을 경험할 수 있게 하고 여러 다양한 임상내용이 포함한 상황에 적용될 수 있다. 시뮬레이션 기술의 사용은 의학교육(medical education), 인증서(certification), 면허교부(Licensure)와 의료의 질 형성에 큰 잠재력을 가지고 있다. 복강경 수술, 내시경검사, 전문심장구조술, 응급기도관리와 외상소생을 포함한 다양한 임상시술의 수행에서 시뮬레이션이 교육생의 술기를 달성하고, 측정하고, 유지하는 유효성을 증명하였다 컴퓨터로 조절되는 시뮬레이터는 맥박, 혈압, 호흡, 대화가 가능하고, 중증질환 또는 외상환자의 치료에 필요한 같은 인명구조 시술을 수행할 수 있다. 의학 시뮬레이션은 의사, 간호사, 응급구조사와 응급 진료를 필요로 하는 환자를 치료하는 사람에게 필요하다. 최신 전문심장구조술 과정수업은 전통적인 강의와 제한된 팀 상호작용이 포함된 이틀 과정이다. 우리는 비 영어권 국제 응급구조학생의 전문심장구조술 술기능력을 알아보고, 그것을 미국 응급구조학생과 비교하고자 한다. 목적(Objective) : 이 연구의 목적은 다양한 전문심장구조술 증례 시나리오를 가진 의학 시뮬레이터를 이용하여 미국과 한국의 응급구조 학생의 능력을 비교하는 것이다. 시행 장소(Site Location) : 이 연구는 한국 제주도에 위치한 제주한라대학 스토니브룩 응급의료교육원에서 진행되었다. 학생들의 평가는 스토니브룩에 위치한 스토니브룩 대학 의료원의 한 명의 평가자(Dr. lee)에 의해 수행되었다. 방법(Methods) : 15명의 한국 응급구조학생들은 세 팀으로 무작위로 선정하였다. 5명이 한 팀이 되어 같은 증례의 시나리오를 받았다. 세 가지 시나리오는 : 첫째, 천식지속상태(Status asthmaticus), 둘째, 긴장기흉을 동반한 만성폐쇄성폐질환(COPD with tension penumothorax) 그리고 마지막으로 메가코드(megacode)를 가진 심정지 이다. 세 팀을 각각 그리고 기본인명구조술(BLS)과 전문심장구조술(ACLS)과정을 마친 미국 응급구조학생들과 비교하였다. 15명의 미국 응급구조학생들 또한 세 팀으로 무작위로 선정하였다. 이 응급구조 학생들은 플러싱병원 의료원 소속으로 그곳에서 이 연구에 참여할 뿐만 아니라 지속적인 의학교육(CME)이수를 받았다. 이들에게도 같은 세 가지 증례의 시나리오가 주어졌고 Dr lee는 총 여섯 팀을 평가하였다(한국 세 팀과 미국 세팀). 결과(Results) : 양 국가의 모든 15명의 학생이 의학시뮬레이터를 사용하여 전문심장구조술 메가코드시험을 포함한 시험에 모두 통과하였다. 비록 학생들을 무작위로 세 팀으로 나누었지만 한 팀이 이 모든 세 증례에서 다른 팀보다 뛰어났다. 제주한라대학 2번 팀은 더 나은 기도관리, 리듬인식과 임상술기를 가진 모든 중요한 활동을 얻기에서 우수했다. 그들은 핵심요구사항을 90% 이상 충족시겼다. 한국의 2번팀(G2K)은 메가코드에서 기도개방, 호흡평가, 순환징후 그리고 흉부압박수와 같은 신체검진 술기에서도 탁월했다. 게다가 다른 팀과 비교 시 리듬인식, 약물지식과 임상술기에서도 높은 점수를 받았으며 2번팀(G2K)이 6팀 중에 가장 뛰어나게 역활수행을 하였다. 결론(Conclusion) : 이 비교 연구에서 한국학생과 미국학생간에 전문심장구조술 메가코드 시험의 통과율에는 차이가 없었다. 그러나 미국학생은 세 팀 사이에 더 적은 변이로 더 일괄된 점수를 받았다. 한국학생들도 모든 세 가지 증례를 통과하였지만 이 세 팀은 미국학생 팀보다 점수에서 더 큰 변이를 보였다.

  • PDF