• 제목/요약/키워드: 인휠모터

검색결과 28건 처리시간 0.041초

수전동 휠체어용 모터 개발 (Development of In-wheel Motor for Power Add-on Drive Wheelchair)

  • 홍응표;박세훈;오홍석;류제청;문무성
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.992-999
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity, are easier to transport, and may be an excellent alternative for the typical manual or electric wheelchairs. The development of in-wheel motor for a PADW is the principal issues. In this paper, design, implementation, and testing of the permanent magnet synchronous motor (PMSM) for a PADW are presented. To design output power and torque of the motor, the equation of motion has been investigated. The design parameters were calculated and the dimension and shape of the motor which was limited by the In-wheel mechanism of the PADW were done by applying FEM and optimal design technique. The prototype of the motor mentioned above was fabricated with precise machining and assembling. Then the motor tested on dynamometer and the measured results of the motor were verified by comparing the design results. The fabricated motor was 80 mm in length with a diameter of 110 mm and small enough to be attached the driving unit of the PADW.

전동 통합 샤시를 이용한 2륜 독립구동 차량의 선회성능 향상에 관한 연구 (Study of Driving Stability Performance of 2-Wheeled Independently Driven Vehicle Using Electric Corner Module)

  • 박진현;최정훈;송현우;황성호
    • 대한기계학회논문집A
    • /
    • 제37권7호
    • /
    • pp.937-943
    • /
    • 2013
  • 독립 구동형 전동 통합 샤시 시스템은 시스템 내구 성능 관련 신뢰성 확보, 구동 전동기 고장 시 차량 안정성 확보, 차륜 중량 증가에 따른 Ride & Handling 성능 저하 등의 문제로 실제 차량에 적용이 지연되고 있다. 본 논문에서는 이러한 문제들 중 Ride & Handling 문제를 해결하기 위해 차량의 주행성능 평가가 가능한 시뮬레이터를 개발하였다. MATLAB/Simulink를 이용하여 독립구동형 전동 샤시 시스템이 적용된 소형 전기 자동차를 모델링 하였으며, 27자유도의 차량 거동 해석이 가능한 CarSim을 이용하여 차량동역학을 모델링 하였다. 개발된 시뮬레이터를 활용하여 차량의 주행 안정성을 향상을 위한 알고리즘을 개발/검증함으로써 차량의 Ride & Handling 성능 저하 문제를 해결하고자 하였다.

실차 주행 조건을 고려한 인휠 차량 거동 해석 및 동력 시험계 부하 토크 인가를 위한 구동 모터의 동적 부하 도출시스템 개발 (Dynamic Performance Analyzing of In-wheel Vehicle considering the Real Driving Conditions and Development of Derivation System for Applying Dynamometer Using Drive Motor's Dynamic Load Torque)

  • 손승완;김기영;차석원;임원식;김정윤
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.294-301
    • /
    • 2016
  • This paper discusses about analyzing in-wheel vehicle's dynamic motion and load torque. Since in-wheel vehicle controls each left and right driving wheels, it is dangerous if vehicle's wheels are not in a cooperative control. First, this study builds the main wheel control logic using PID control theory and evaluates the stability. Using Carsim-Matlab/Simulink, vehicle dynamic motion is simulated in virtual 3D driving road. Through this, in-wheel vehicle's driving performance can be analyzed. The target vehicle is a rear-wheel drive in D-class sedan. Second, by using the first In-wheel vehicle's performance results, it derivate the drive motor's dynamic load torque for applying the dynamometer. Extracted load torque impute to dynamometer's load motor, linear experiment in dynamometer can replicated the 3-D road driving status. Also it, will be able to evaluate the more accurate performance analysis and stability, as a previous step of actual vehicle experiment.

식물 생산로봇에 적용을 위한 사륜 독립 조향 구동 플랫폼 연구 (Development of Four-Wheel Independent Steering Driving Platform for Agricultural Robot)

  • 김경철;김창완;김경주;유범상
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.942-950
    • /
    • 2011
  • Automation is important in modern agricultural environment, which demands the highest level of technology. In the paper an independent four-wheel steering driving platform is developed especially for horticulture in glass house farm. Mathematical modeling of the four wheel system is carried out for smooth movement. The relationships between steering angle, the turning radius, and escape trajectory are simulated using the dynamic analysis program. Optimal driving algorithm is sought through the performance evaluation.

In-wheel motor 차량의 yaw 안정성 향상을 위한 scheduler 설계 (Scheduler design for yaw stability improvement of in-wheel motor vehicle)

  • 한인재;김진성;권오신;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.212-217
    • /
    • 2011
  • A scheduling technique for the improvement of yaw motion stability in in-wheel motor vehicle is proposed. Normally vehicle velocity is controlled via conventional PID method. When vehicle is encountered with different road conditions on left and right hand sides, unstable yaw motion is induced due to the driving force difference in both wheels. In this paper a scheduling formular for control gain is derived in terms of experimental results to generate proper counter control action. Simulation result reveals its effective performance in yaw control of in-wheel vehicle.

  • PDF

인휠 독립 구동 전기 자동차의 구동 모터 통합 고장 진단 알고리즘 (Integrated Fault Diagnosis Algorithm for Driving Motor of In-wheel Independent Drive Electric Vehicle)

  • 전남주;이형철
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.99-111
    • /
    • 2016
  • This paper presents an integrated fault diagnosis algorithm for driving motor of In-wheel independent drive electric vehicle. Especially, this paper proposes a method that integrated the high level fault diagnosis and the low level fault diagnosis in order to improve a robustness and performance of the fault diagnosis system. The high level fault diagnosis is performed using the vehicle dynamics analysis and the low level fault diagnosis is carried using the motor system analysis. The validity of the high level fault diagnosis algorithms was verified through $Carsim^{(R)}$ and MATLAB/$Simulink^{(R)}$ cosimulation and the low level fault diagnosis's validity was shown by applying it to a MATLAB/$Simulink^{(R)}$ interior permanent magnet synchronous motor control system. Finally, this paper presents a fault diagnosis strategy by combining the high level fault diagnosis and the low level fault diagnosis.

속도 관측기를 이용한 전기스쿠터용 IN-WHEEL 영구자석 동기 전동기의 제어 방법 (The Control Method of In-Wheel PMSM for Electric Scooter using Speed Observer)

  • 손태식;이용균;김학원;조관열;목형수
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.130-136
    • /
    • 2011
  • 본 논문은 전기 스쿠터용 영구자석 동기 전동기(PMSM)의 토크제어 알고리듬을 제안한다. 전기 스쿠터용 인휠(In-wheel) 모터는 기구적으로 고 분해능의 회전자 위치검출 센서인 레졸버나 엔코더를 장착하기 어려워 저 분해능의 홀 센서를 사용한다. 본 논문은 홀 센서를 갖는 영구자석동기전동기의 벡터제어를 위하여 속도관측기를 사용하여 회전자의 속도 및 고분해능의 위치정보를 관측한다. 초기 기동시에는 일반적인 120도 통전방식의 BLDC 운전모드로 기동하고, 기동 후에는 벡터제어 방식으로 전환하여 단위 전류 당 최대 토크(Maximum Torque Per Ampere, MTPA) 운전과 약자속(Flux weakening) 제어를 수행한다. 제안한 알고리듬은 전기스쿠터의 장착실험을 통하여 검증하였다.

인휠드라이브 타입 $6{\times}6$ 차량 플랫폼을 위한 시스템 모델링 및 시뮬레이션 (System Modeling and Simulation for an In-wheel Drive Type $6{\times}6$ Vehicle)

  • 이정엽;서승환;손웅희;김창준;한창수
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.1-11
    • /
    • 2011
  • The skid-steering method that applied a number of mobile robot currently is extremely effective in narrow area. But it contains several problems such as its natural properties, slip, occurred by different direction between vehicle's driving and wheel's rotary. Through this paper, suitable control algorithm of $6{\times}6$ skid steering wheeled vehicle and its driving methods are proposed by analyzing the behavior $6{\times}6$ skid-steered wheeled vehicle model designed by engineering analysis strategy. To do this, based on a behavior of designed driving system, required torque and other performance of in-wheel type motor system are considered, and finally control algorithm for each wheel is proposed and simulated using this model. To test the proposed vehicle system, driver model is designed using PID closed loop system and included in the total driving control algorithm. The Performance of designed vehicle model is verified by using DYC (Direct Yaw Control) cornering mode and slip mode control to follow the steering input which are essential to evaluate the driving performance of $6{\times}6$ vehicle. Proposed modeling strategy and control method will be implemented to the real $6{\times}6$ in-wheel drive type vehicle.