• Title/Summary/Keyword: 인터넷 데이터베이스

Search Result 1,508, Processing Time 0.028 seconds

Artificial Intelligence Techniques for Predicting Online Peer-to-Peer(P2P) Loan Default (인공지능기법을 이용한 온라인 P2P 대출거래의 채무불이행 예측에 관한 실증연구)

  • Bae, Jae Kwon;Lee, Seung Yeon;Seo, Hee Jin
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.207-224
    • /
    • 2018
  • In this article, an empirical study was conducted by using public dataset from Lending Club Corporation, the largest online peer-to-peer (P2P) lending in the world. We explore significant predictor variables related to P2P lending default that housing situation, length of employment, average current balance, debt-to-income ratio, loan amount, loan purpose, interest rate, public records, number of finance trades, total credit/credit limit, number of delinquent accounts, number of mortgage accounts, and number of bank card accounts are significant factors to loan funded successful on Lending Club platform. We developed online P2P lending default prediction models using discriminant analysis, logistic regression, neural networks, and decision trees (i.e., CART and C5.0) in order to predict P2P loan default. To verify the feasibility and effectiveness of P2P lending default prediction models, borrower loan data and credit data used in this study. Empirical results indicated that neural networks outperforms other classifiers such as discriminant analysis, logistic regression, CART, and C5.0. Neural networks always outperforms other classifiers in P2P loan default prediction.

A Study on the Classification of Unstructured Data through Morpheme Analysis

  • Kim, SungJin;Choi, NakJin;Lee, JunDong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.105-112
    • /
    • 2021
  • In the era of big data, interest in data is exploding. In particular, the development of the Internet and social media has led to the creation of new data, enabling the realization of the era of big data and artificial intelligence and opening a new chapter in convergence technology. Also, in the past, there are many demands for analysis of data that could not be handled by programs. In this paper, an analysis model was designed and verified for classification of unstructured data, which is often required in the era of big data. Data crawled DBPia's thesis summary, main words, and sub-keyword, and created a database using KoNLP's data dictionary, and tokenized words through morpheme analysis. In addition, nouns were extracted using KAIST's 9 part-of-speech classification system, TF-IDF values were generated, and an analysis dataset was created by combining training data and Y values. Finally, The adequacy of classification was measured by applying three analysis algorithms(random forest, SVM, decision tree) to the generated analysis dataset. The classification model technique proposed in this paper can be usefully used in various fields such as civil complaint classification analysis and text-related analysis in addition to thesis classification.

Design and Implementation of Mobile Medical Information System Based Radio Frequency IDentification (RFID 기반의 모바일 의료정보시스템의 설계 및 구현)

  • Kim, Chang-Soo;Kim, Hwa-Gon
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.317-325
    • /
    • 2005
  • The recent medical treatment guidelines and the development of information technology make hospitals reduce the expense in surrounding environment and it requires improving the quality of medical treatment of the hospital. That is, with the new guidelines and technology, hospital business escapes simple fee calculation and insurance claim center. Moreover, MIS(Medical Information System), PACS(Picture Archiving and Communications System), OCS(Order Communicating System), EMR(Electronic Medical Record), DSS(Decision Support System) are also developing. Medical Information System is evolved toward integration of medical IT and situation si changing with increasing high speed in the ICT convergence. These changes and development of ubiquitous environment require fundamental change of medical information system. Mobile medical information system refers to construct wireless system of hospital which has constructed in existing environment. Through RFID development in existing system, anyone can log on easily to Internet whenever and wherever. RFID is one of the technologies for Automatic Identification and Data Capture(AIDC). It is the core technology to implement Automatic processing system. This paper provides a comprehensive basic review of RFID model in Korea and suggests the evolution direction for further advanced RFID application services. In addition, designed and implemented DB server's agent program and Client program of Mobile application that recognized RFID tag and patient data in the ubiquitous environments. This system implemented medical information system that performed patient data based EMR, HIS, PACS DB environments, and so reduced delay time of requisition, medical treatment, lab.

  • PDF

Research on The Implementation of Smart Factories through Bottleneck improvement on extrusion production sites using NFC (NFC를 활용한 압출생산현장의 Bottleneck 개선을 통한 스마트팩토리 구현 연구)

  • Lim, Dong-Jin;Kwon, Kyu-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.104-112
    • /
    • 2021
  • For extrusion processes in the process industry, the need to build smart factories is increasing. However, in most extrusion production sites, the production method is continuous, and because the properties of the data are undeed, it is difficult to process the data. In order to solve this problem, we present a methodology utilizing a near field communication (NFC) sensor rather than water-based data entry. To this end, a wireless network environment was built, and a data management method was designed. A non-contact NFC method was studied for the production performance-data input method, and an analysis method was implemented using the pivot function of the Excel program. As a result, data input using NFC was automated, obtaining a quantitative effect from reducing the operator's data processing time. In addition, using the input data, we present a case where a bottleneck is improved due to quality problems.

Development of LoRa IoT Automatic Meter Reading and Meter Data Management System for Smart Water Grid (스마트워터그리드를 위한 LoRa IoT 원격검침 및 계량데이터 시스템 개발)

  • Park, Jeong-won;Park, Jae-sam
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.172-178
    • /
    • 2022
  • In this paper, water meter AMR(automatic meter reading), one of the core technologies of smart water grid, using LoRa IoT network is studied. The main content of the research is to develop the network system and show the test results that one PC server receives the readings of water meters from multiple households through LoRa communication and stores them in the database, and at the same time sends the data to the web server database through internet. The system also allows users to monitor the meter readings using their smartphones. The hardware and firmware of the main board of the digital water meter are developed. For a PC server program, MDMS(meter data management system) is developed using Visual C#. The app program running on the user's smartphone is also developed using Android Studio. By connecting each developed parts, the total network system is mounted on a flow test bench in the laboratory and tested. For the fields test, 5 places around the university are selected and the transmission distances are tested. The test result show that the developed system can be applied into the real field. The developed system can be expanded to various social safety nets such as monitoring the living alone or elderly with dementia.

A Study on the Improvement of Fire Alarm System in Special Buildings Using Beacons in Edge Computing Environment (에지 컴퓨팅 환경에서 비콘을 활용한 특수건물 화재 경보 시스템 개선 방안 연구)

  • Lee, Tae Gyu;Choi, Kyeong Seo;Shin, Youn Soon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.217-224
    • /
    • 2022
  • Today, with the development of technology and industry, fire accidents in special buildings are increasing as special buildings increase. However, despite the rapid development of information and communication technology, human casualties are steadily occurring due to the underdeveloped and ineffective indoor fire alarm system. In this study, we confirmed that the existing indoor fire alarm system using acoustic alarm could not deliver a sufficiently large alarm to the in-room personnel. To improve this, we designed and implemented a fire alarm system using edge computing and beacons. The proposed improved fire alarm system consists of terminal sensor nodes, edge nodes, a user application, and a server. The terminal sensor nodes collect indoor environment data and send it to the edge node, and the edge node monitors whether a fire occurs through the transmitted sensor value. In addition, the edge node continuously generate beacon signals to collect information of smart devices with user applications installed within the signal range, store them in a server database, and send application push-type fire alarms to all in-room personnel based on the collected user information. As a result of conducting a signal valid range measurement experiment in a university building with dense lecture rooms, it was confirmed that device information was normally collected within the beacon signal range of the edge node and a fire alarm was quickly sent to specific users. Through this, it was confirmed that the "blind spot problem of the alarm" was solved by flexibly collecting information of visitors that changes time to time and sending the alarm to a smart device very adjacent to the people. In addition, through the analysis of the experimental results, a plan to effectively apply the proposed fire alarm system according to the characteristics of the indoor space was proposed.

A study on deep neural speech enhancement in drone noise environment (드론 소음 환경에서 심층 신경망 기반 음성 향상 기법 적용에 관한 연구)

  • Kim, Jimin;Jung, Jaehee;Yeo, Chaneun;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.342-350
    • /
    • 2022
  • In this paper, actual drone noise samples are collected for speech processing in disaster environments to build noise-corrupted speech database, and speech enhancement performance is evaluated by applying spectrum subtraction and mask-based speech enhancement techniques. To improve the performance of VoiceFilter (VF), an existing deep neural network-based speech enhancement model, we apply the Self-Attention operation and use the estimated noise information as input to the Attention model. Compared to existing VF model techniques, the experimental results show 3.77%, 1.66% and 0.32% improvements for Source to Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short-Time Objective Intelligence (STOI), respectively. When trained with a 75% mix of speech data with drone sounds collected from the Internet, the relative performance drop rates for SDR, PESQ, and STOI are 3.18%, 2.79% and 0.96%, respectively, compared to using only actual drone noise. This confirms that data similar to real data can be collected and effectively used for model training for speech enhancement in environments where real data is difficult to obtain.

Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms (다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집)

  • Lim, Hyuna;Oh, Seojeong;Son, Hyeongjun;Oh, Yosep
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Recently, digital transformation in manufacturing has been accelerating. It results in that the data collection technologies from the shop-floor is becoming important. These approaches focus primarily on obtaining specific manufacturing data using various sensors and communication technologies. In order to expand the channel of field data collection, this study proposes a method to automatically collect manufacturing data based on vision-based artificial intelligence. This is to analyze real-time image information with the object detection and tracking technologies and to obtain manufacturing data. The research team collects object motion information for each frame by applying YOLO (You Only Look Once) and DeepSORT as object detection and tracking algorithms. Thereafter, the motion information is converted into two pieces of manufacturing data (production performance and time) through post-processing. A dynamically moving factory model is created to obtain training data for deep learning. In addition, operating scenarios are proposed to reproduce the shop-floor situation in the real world. The operating scenario assumes a flow-shop consisting of six facilities. As a result of collecting manufacturing data according to the operating scenarios, the accuracy was 96.3%.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

Design and Implementation of Medical Information System using QR Code (QR 코드를 이용한 의료정보 시스템 설계 및 구현)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • The new medical device technologies for bio-signal information and medical information which developed in various forms have been increasing. Information gathering techniques and the increasing of the bio-signal information device are being used as the main information of the medical service in everyday life. Hence, there is increasing in utilization of the various bio-signals, but it has a problem that does not account for security reasons. Furthermore, the medical image information and bio-signal of the patient in medical field is generated by the individual device, that make the situation cannot be managed and integrated. In order to solve that problem, in this paper we integrated the QR code signal associated with the medial image information including the finding of the doctor and the bio-signal information. bio-signal. System implementation environment for medical imaging devices and bio-signal acquisition was configured through bio-signal measurement, smart device and PC. For the ROI extraction of bio-signal and the receiving of image information that transfer from the medical equipment or bio-signal measurement, .NET Framework was used to operate the QR server module on Window Server 2008 operating system. The main function of the QR server module is to parse the DICOM file generated from the medical imaging device and extract the identified ROI information to store and manage in the database. Additionally, EMR, patient health information such as OCS, extracted ROI information needed for basic information and emergency situation is managed by QR code. QR code and ROI management and the bio-signal information file also store and manage depending on the size of receiving the bio-singnal information case with a PID (patient identification) to be used by the bio-signal device. If the receiving of information is not less than the maximum size to be converted into a QR code, the QR code and the URL information can access the bio-signal information through the server. Likewise, .Net Framework is installed to provide the information in the form of the QR code, so the client can check and find the relevant information through PC and android-based smart device. Finally, the existing medical imaging information, bio-signal information and the health information of the patient are integrated over the result of executing the application service in order to provide a medical information service which is suitable in medical field.