A Study on Design Education Re-engineering by Multi-disciplinary Approach (다학제적 접근을 통한 대학디자인 교육혁신 프로그램 연구)
-
- Archives of design research
- /
- v.20 no.3 s.71
- /
- pp.299-314
- /
- 2007
For the past 20 years, the growth and development of university-design-educational institutes contributed to the industrial development of our country. Due to the technological fluctuation and changes in the industrial structure in the latter half of the 20th century, the enterprise is demanding professionally-oriented design manpower. The principle which appears from instances of the advanced nations is to accommodate the demands in social changes and apply them to educational design programs. In order to respond promptly to the industrial demand especially, the advanced nations adopted "multidisciplinary design education programs" to lead innovation in the area of design globally. The objective of the research consequently is to suggest an educational system and a program through which the designer can be educated to obtain complex knowledge and the technique demanded by the industry and enterprise. Nowadays in order to adapt to a new business environment, designers specially should have both the knowledge and techniques in engineering and business administration. We suggest that the IPDI, a multidisciplinary design educational system and program is made up of the coordinated operation of major classes, on-the-job training connection, educational system for research base creation, renovation design development program for the application and the synthesis of alternative proposals about the training facility joint ownership by connecting with the education of design, business administration and engineering.
Korea has a high standard of IT environment to serve exhibit programs through the web with internet propagation and IT technology. However, the web exhibition of public institutions not only seem to introduce off-line exhibitions but also not to invigorate. It is caused by the lack of awareness, the cost of system installation and the lack of professional manpower. In this situation, OMEKA could suggest practical solutions to archives where need their own exhibition through the web. Especially, it would helpful for small record management organizations which are not enough budget and personal. OMEKA is an open source software program for digital collection and contents management. It has an affinity with users unlike traditional archives service programs. It also has been variously used by libraries, museums and schools because of exceptional exhibit functions. In this article, we introduce to the installation of a practical use about OMEKA. Regarding to OMEKA features, we consider it to raise exhibit effects. OMEKA would reduce the cost related to plans of exhibitions because it could display various contents and programs which reflecting characteristics of institutions. In addition, the availability of installation and widespread technological environment would lessen burden of public institutions. Using OMEKA, they would improve service level of public institutions and, make users satisfy. Therefore, they can change the social recognition of public institutions. OMEKA can contribute to various exercises of public records. It is not just the stereotypical system but, serves exhibition and collections with the strategy which each public institution would like to display. After all, it not only to connect to users with producers but also to improve the public image of institutions positively. Then, OMEKA would bring the great result through this interaction between public institutions and users.
Recommender system has become one of the most important technologies in e-commerce in these days. The ultimate reason to shop online, for many consumers, is to reduce the efforts for information search and purchase. Recommender system is a key technology to serve these needs. Many of the past studies about recommender systems have been devoted to developing and improving recommendation algorithms and collaborative filtering (CF) is known to be the most successful one. Despite its success, however, CF has several shortcomings such as cold-start, sparsity, gray sheep problems. In order to be able to generate recommendations, ordinary CF algorithms require evaluations or preference information directly from users. For new users who do not have any evaluations or preference information, therefore, CF cannot come up with recommendations (Cold-star problem). As the numbers of products and customers increase, the scale of the data increases exponentially and most of the data cells are empty. This sparse dataset makes computation for recommendation extremely hard (Sparsity problem). Since CF is based on the assumption that there are groups of users sharing common preferences or tastes, CF becomes inaccurate if there are many users with rare and unique tastes (Gray sheep problem). This study proposes a new algorithm that utilizes Social Network Analysis (SNA) techniques to resolve the gray sheep problem. We utilize 'degree centrality' in SNA to identify users with unique preferences (gray sheep). Degree centrality in SNA refers to the number of direct links to and from a node. In a network of users who are connected through common preferences or tastes, those with unique tastes have fewer links to other users (nodes) and they are isolated from other users. Therefore, gray sheep can be identified by calculating degree centrality of each node. We divide the dataset into two, gray sheep and others, based on the degree centrality of the users. Then, different similarity measures and recommendation methods are applied to these two datasets. More detail algorithm is as follows: Step 1: Convert the initial data which is a two-mode network (user to item) into an one-mode network (user to user). Step 2: Calculate degree centrality of each node and separate those nodes having degree centrality values lower than the pre-set threshold. The threshold value is determined by simulations such that the accuracy of CF for the remaining dataset is maximized. Step 3: Ordinary CF algorithm is applied to the remaining dataset. Step 4: Since the separated dataset consist of users with unique tastes, an ordinary CF algorithm cannot generate recommendations for them. A 'popular item' method is used to generate recommendations for these users. The F measures of the two datasets are weighted by the numbers of nodes and summed to be used as the final performance metric. In order to test performance improvement by this new algorithm, an empirical study was conducted using a publically available dataset - the MovieLens data by GroupLens research team. We used 100,000 evaluations by 943 users on 1,682 movies. The proposed algorithm was compared with an ordinary CF algorithm utilizing 'Best-N-neighbors' and 'Cosine' similarity method. The empirical results show that F measure was improved about 11% on average when the proposed algorithm was used