• Title/Summary/Keyword: 인축적미생물

Search Result 40, Processing Time 0.03 seconds

Production of Bioplastics from Activated Sludge in a Mixed Culture (혼합배양계에서 활성오니를 이용한 생분해성플라스틱 생산 연구)

  • Cho, Jae-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.119-126
    • /
    • 2001
  • A process for the production of bioplastics from wastewater with an open microbial culture was developed and evaluated. The process consists of a selection reactor to select bacteria in feast/famine regime and an accumulation reactor to produce PHA using selected bacteria. Polyhydroxyalkanoate(PHAs) accumulating bacteria could be efficiently grown in a sequencing batch reactor(SBR) without any growth limitation. For the high production of PHA limitation such as oxygen and nutrients seemed to be needed. Accumulation experiments were performed to evaluate the level of accumulation of PHA. Limited aeration had no effect, but nutrients limitation showed high accumulation. Bacteria which were selected in the SBR could accumulate PHA till 60% of cellular dry weight in accumulation experiments under nitrogen limitation. PHA accumulation rate decreased with increasing PHA content in the cells. Clearly, PHA accumulation rate has a strong correlation with the PHA content of the cells.

  • PDF

Biological Nutrient Removal by Enhancing Anoxic Phosphate Uptake (무산소 조건에서의 인섭취를 이용한 생물학적 영양염류 제거)

  • Lee, Dae Sung;Jeon, Che Ok;Park, Jong Moon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.861-867
    • /
    • 2000
  • The feasibility of simultaneous phosphorus and nitrogen removal by enhancing anoxic phosphorus uptake was investigated in a sequencing batch reactor (SBR). By introducing an anoxic phase into an anaerobic-aerobic SBR (AO SBR), significant amounts of denitrifying phosphorus accumulating organisms (DPAOs) which can utilize nitrate as electron acceptor could be accumulated in the reactor (anaerobic-aerobic- anoxic-aerobic SBR, $(AO)_2$ SBR). A direct comparison of phosphorus uptake rate under anaerobic and aerobic conditions showed that the fraction of DPAOs in P-removing sludge were increased from 10% in the AO SBR to 64% in $(AO)_2$ SBR. The $(AO)_2$ SBR showed stable phosphorus and nitrogen removal efficiency: average removal efficiencies of TOC, total nitrogen, and phosphorus were 92%, 88%, and 100%. respectively. Results of the $(AO)_2$ SBR operation and batch tests showed that nitrite (up to 10 mg-N/L) was not detrimental to anoxic phosphorus uptake and could serve as good electron acceptor like nitrate.

  • PDF

Nutrient Removal using the Denitrifying Phosphate Accumulating Organisms (dPAOs) and Microbial Community Analysis in Anaerobic-Anoxic Sequencing Batch Reactor (Denitrifying Phosphate Accumulating Organisms (dPAOs)을 이용한 영양소제거 및 반응조내 미생물 분포 조사)

  • 박용근;이진우;이한웅;이수연;최의소
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • Laboratory experiments were aimed to evaluate the effect of nitrate as a electron acceptor during the biological phosphorus uptake and to investigate the microbial community. Anaerobic-anoxic sequencing batch reactor (SBR) compared the removal behaviour to anaerobic-oxic SBR, both SBRs maintained lower effluent quality with 1.0 mgp/1. Anaerobic-anoxic SBR was able to remove additional 5.0 to 7.0 mg (P+N)/ι than other biological nutrient removal (BM) system. Therefore, it was proposed that the anaerobic-anoxic SBR was more effective at weak sewage. From the results of the maicrobial community analysis, it can be inferred that denitrifying bacteria and polyphosphate accumulating bacteria coexist in anaerobic-anoxic SBR during stable condition for removing the nitrogen and phosphorus. Particularly, it was suggested that the Zoogloea ramigera in the $\beta$-subclass of proteobacteria and the Alcaligenes defragrans of the Rhodocyclus group in the $\beta$-subclass of proteobacteria played a major role for removing the nitrogen and phosphorus as dPAOs (denitrifying phosphate accumulating organisms).

포기 시간 변경에 따른 SBR의 영양염류 제거 특성과 MLVSS에 관한 연구

  • Jeong, No-Seong;Park, Yeong-Sik;Kim, Dong-Seok
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.383-389
    • /
    • 2007
  • 호기시간 변경에 따른 SBR에서의 영양염류제거특성과 MLVSS의 변화를 본 이번 연구에서는 다음과 같은 결론을 얻었다. 1) 충분하지 못한 산소의 공급은 미생물의 wash-out으로 인한 영양염류 제거 효율의 저조를 나타냈다. 2) 산소 공급량이 $0.045m^3$였던 R2에서 저조산 질산화가 나타났으나, 인을 과다 축적하는 EBPR(Enhanced Biological Phosphorus Removal)을 나타냈다. 3) 산소 공급량이 $0.06m^3$이상이었던 R3, R4에서는 60%이상의 질산화 및 탈질화와 약 100%에 달하는 인 제거 효율을 나타내었다. 4) 단위 미생물당 $1.5{\sim}1.8ml/mg$의 공급 산소량이 인 흡수에 유리한 것으로 나타났다. 5) 공급되는 산소에 있어 유기물 분해>인흡수>질산화에 우선적으로 소모되는 것으로 나타났다.

  • PDF

Toxic Effects of Binary Mixtures of Heavy Metals on the Growth and P Removal Efficiencies of Alcaligenes sp. (Alcaligenes sp.의 생장과 인 제거에 미치는 이종 중금속 혼합의 독성 효과)

  • Kim, Deok Hyun;Yoo, Jin;Chung, Keun Yook
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • BACKGROUND: This study was initiated to quantitatively evaluate the effects of five heavy metals on the growth and P removal efficiencies of Alcaligenes sp., known as the Phosphorus Accumulating Organisms (PAOs). It was cultivated in the batch system with five heavy metals, such as Cd, Cu, Zn, Pb and Ni, added in single and binary mixtures, respectively.METHODS AND RESULTS: IC50 (half of inhibition concentration of bacterial growth) and EC50 (half of effective concentration of phosphorus removal Efficiencies) were used to quantitatively evaluate the effects of heavy metals on the growth and phosphorus removal Efficiencies of Alcaligenes sp. In addition, Additive Index Value (A.I.V.) method was used to evaluate the interactive effects between Alcaligenes sp. and heavy metals. As a result, as the five heavy metals were singly added to Alcaligenes sp., the greatest inhibitory effects on the growth and P removal efficiencies of each bacteria was observed in the cadmium (Cd). In the binary mixture treatments of heavy metals, the treatments of lowest IC50 and EC50 were the Cd + Cu treatment. Based on the IC50 and EC50 of the binary mixtures of heavy metals treatments, most interactive effects between the heavy metals were found to be antagonistic.CONCLUSION: Based on the results obtained from this study, it appears that they could provide the basic information about the toxic effects of the respective treatments of single and binary mixtures of heavy metals on the growth and P removal efficiencies of Alcaligenes sp. through further study about the characterization of functional proteins involved in toxic effects of heavy metals.

The Structure and The Reason for Nuclear Accumulation of Poly A(-) Spliced SV40 RNA (Poly A tail이 없는 SV 40 spliced RNA의 구조 및 핵내 축적의 원인)

  • 박주상;노정혜
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 1989
  • The locations of 5' ends as well as the splicing pattern of viral poly A(-) 19S RNA from monkey cells infected with SV40 were determined by a modification of primer extension method. The 5' end of this RNA mapped at the major cap site at nucleotide residue 325, used most frequently by SV40 late RNAs. The intron from nt.373 to nt.558 was removed as the ordinary cytoplasmic poly A(+) 19S RNA. The 3'end of this RNA was very heterogeneous and distributed over 1 kb upstream of polyadenylation site, as determined by S1 nuclease mapping. The reason for this normally initiated and spliced RNA to accumulate in the nucleus was investigated. In order to test whether the presence of unused 3' splice region on this RNA caused such subcellular distribution, cells were transfected with SV40 mutant KNA containing deletion around 3' splice site. The RNA deleted of 3' splice region accumulated mainly in the cytoplasm. This accumulation did not result from the increased stability of the RNA due to the deletion, since the wild type and mutant RNAs exhibited similar half lives after chase with actinomycin D. Therefore it is likely that the 19S spliced RNA is hindered from being transported into the cytoplasm due to some pre-splicing complexes formed at the unused 3' splice site.

  • PDF

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

Encapsulation of Whole Cell $\beta$-Galactosidase of Escherichia coli (전세포 Escherichia coli 의 캡슐고정화)

  • 이병희;박중곤
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.398-404
    • /
    • 1996
  • Escherichia coli was inoculated in calcium alginate capsules and cultivated to prepare encapsulated whole cell ${\beta}$-galactosidase. The dry cell weight in the capsule reached 100 g/L based on the inner space of the capsule. The activity of the encapsulated whole cell ${\beta}$-galactosidase increased with the dry cell weight increase during cultivation in the production medium. The activity of the encapsulated whole cell ${\beta}$-galactosidase was increased 25% by adding $2{\times}10^{-4}M Zn^{+2}$ ion in the production medium and 10% by coencapsulating with 2% (v/v) sunflower seed oil. The activity of encapsulated whole cell ${\beta}$-galactosidase produced in the concentric air lift reactor in which kLa was 82/hr was 86% higher than that in the shaking flask incubator where kLa was 2.55/hr.

  • PDF

세계 종합발효산업의 메카 대상

  • 한금수
    • Food Industry
    • /
    • s.171
    • /
    • pp.92-98
    • /
    • 2003
  • ''인간의 존엄과 자존을 중시하고, 고객의 만족과 가치를 중시하며, 가족의 행복과 사회에 공헌한다''라는 경영이념 하에서 대상㈜ 중앙연구소는 심화되어 가는 기술경쟁시대에서 발효와 소재 및 전분,당을 기반으로 3대 중점 연구개발 분야를 선정하여 국제 경쟁력 우위의 기술로 육성하고자 1980년 기술연구소를 시작으로 확대 개편을 통해 현재의 경기도 이천으로 95년 이전 했다. 연구기관으로는 식품연구소와 중앙연구소가 있는데 전자는 식품을 가공 처리하여 일반소비자가 소비하는 제품에 관한 연구를 하고 후자는 식품가공회사에서 사용되는 소재의 개발에 관한 연구를 하고 있다. 규모는 대지 $33,919\;m^2$, 건평 $12,347\;m^2$인 지하1층, 지상 3층 건물로 구성되었고 본고에서는 중앙연구소의 조직과 연구업무에 관해 기술하고자 한다. 조직은 바이오연구실, 소재연구실, 전분당연구실 3개실과 연구지원팀으로 이루어져 있으며 총 80여명의 전문연구원들이 지난 50여년간 축적해 온 발효공학기술을 기반으로 발효 미생물의 게노믹스(Genomics) 연구와 이를 응용하기 위한 플랫폼 기술 개발 및 전통식품의 선진과학화에 전념하고 있다. 또한 날로 심각해지는 환경문제를 해결하기 위하여 자연에서 완전히 분해되는 생플라스틱 소재, 기능성 전분 및 당류, 고부가가치 아미노산 유도체 개발에도 집중하고 있다. 이제 각 실에서 추진중인 주요 연구개발 분야에 대해서 알아 본다.

  • PDF

Relationship between Phosphorus Release and Intracellular Storage Polymer Synthesis by Phosphorus Accumulating Organisms (인축적 미생물의 인방출과 세포내 저장물질 합성관계)

  • Shin, Eung-Bai;Kim, Mee-Kyung;Hong, Jun-Hyeok;Kong, Dong-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.692-697
    • /
    • 2004
  • Biological phosphorus removal is characterized by complex interactions between different intracellular components of energy as PHA. Therefore, fundamental understanding of the behavior of the intracellular components and their influence on the removal of phosphorus is essential before control strategies to stabilize the proper process. The purpose of this study is to investigate relationship between release of phosphorus and synthesis of intracellular storage polymer. Mass of stored intracellular storage polymer was 21.2 mg PHA/L, 28.8 mg PHA/g MLSS. And phosphorus release/intracellular storage polymer synthesis rate was 1.8545 mg stored polymer/mg Phosphate. In the aerobic phase, mass of PAOs synthesis is 49.37 mg PAOs/L. And PAOs fraction was 6.7-6.9%. Thus intracellular storage polymer synthesis by PAOs is calculated as 493mg PHA/g PAOs.