• Title/Summary/Keyword: 인체 이미지

Search Result 116, Processing Time 0.021 seconds

Evaluation of the Lens Absorbed Dose of MVCT and kV-CBCT Use for IMRT to the Nasopharyngeal Cancer Patient (비인두암 환자에 대한 세기조절 방사선치료 시 이용되는 MVCT와 kV-CBCT의 수정체 흡수선량 평가)

  • Choi, Jae Won;Kim, Cheol Chong;Park, Su Yeon;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.131-136
    • /
    • 2013
  • Purpose: Quantitative comparative evaluation of the difference in eye lens absorbed dose when measured by MVCT and kV-CBCT, though such a dose was not included in the original IMRT treatment plan for the nasopharyngeal cancer patient. Materials and Methods: We used CT (Lightspeed Ultra 16, General Electric, USA) against an Anderson rando phantom (Alderson Research Laboratories Inc, USA) and established the plan for tomotherapy treatment (Tomotherapy, Inc, USA) and linear accelerator treatment (Pinnacle 8.0, Philips Medicle System) for the achieved CT images on the same condition with the nasopharyngeal cancer patient treatment plan. Then, align the ther-moluminescence dosimeter (TLD100 Harshaw, USA) with the eye lens, shot the lens with Tomotherapy MVCT under 3 conditions (Fine, Normal, and Coarse), and shot both lenses with kV-CBCT under 2 conditions (Low Dose Head and Standard Dose Head) 3 times each. Results: When we analyzed the eye lens absorbed dose according to MVCT and kV-CBCT images by using both Tomotherapy and Pinacle 8.0, we achieved the following result; According to Tomotherapy MVCT, RT 0.8257 cGy in the Coarse mode, LT 0.8137 cGy, RT 1.089 cGy and LT 1.188 cGy in the Normal mode, and RT 2.154 cGy and LT 2.082 cGy in the Fine mode. According to Pinacle 8.0 kV-CBCT, RT 0.2875 cGy and LT 0.1676 cGy in the Standard Dose mode and RT 0.1648 cGy and LT 0.1212 cGy in the Low-Dose mode. In short, the MVCT result was significantly different from that of kV-CBCT, up to 20 times. Conclusion: We think kV-CBCT is more effective for reducing the amount of radiation which a patient is receiving during intensity modulated radiation treatment for other purposes than treatment than MVCT, when we consider the absorbed dose only from the viewpoint of image-guided radiation therapy. Besides, we understood the amount of radiation is too sensitive to the shooting condition, even when we use the same equipment.

  • PDF

CT and MRI image fusion reproducibility and dose assessment on Treatment planning system (치료계획시스템에서 전산화단층촬영과 자기공명영상의 영상융합 재현성 및 선량평가)

  • Ahn, Byeong Hyeok;Choi, Jae Hyeok;Hwang, Jae ung;Bak, Ji yeon;Lee, Du hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.33-41
    • /
    • 2017
  • Objectives: The aim of this study is to evaluate the reproducibility and usefulness of the images through the fusion of CT(Computed tomography) and MRI(Magnetic resonance imaging) using a self-manufactured phantom. We will also compare and analyze the target dose from acquired images. Materials and Methods: Using a self-manufactured phantom, CT images and MRI images are acquired by 1.5T and 3.0T of different magnetic fields. The reproducibility of the size and volume of the small holes present in the phantom is compared through the image from CT and 1.5T and 3.0T MRI, and dose changes are compared and analyzed on any target. Results: 13 small hole diameters were a maximum 31 mm and a minimum 27.54 mm in the CT scan and the were measured within an average of 29.28 mm 1 % compared to actual size. 1.5 T MRI images showed a maximum 31.65 mm and a minimum 24.3 mm, the average is 28.8 mm, which is within 1 %. 3.0T MRI images showed a maximum 30.2 mm and a minimum 27.92 mm, the average is 29.41 mm, which is within 1.3 %. The dose changes in the target were 95.9-102.1 % in CT images, 93.1-101.4 % in CT-1.5T MRI fusion images, and 96-102 % in CT-3.0T MRI fusion images. Conclusion: CT and MRI are applied with different algorithms for image acquisition. Also, since the organs of the human body have different densities, image distortion may occur during image acquisition. Because these inaccurate images description affects the volume range and dose of the target, accurate volume and location of the target can prevent unnecessary doses from being exposed and errors in treatment planning. Therefore, it should be applied to the treatment plan by taking advantage of the image display algorithm possessed by CT and MRI.

  • PDF

Consumer Intention to Purchase Domestic/Foreign Brand Jeans;Beliefs, Attitude, and Individual Characteristics. (국내 및 외국 상표 청바지의 구매의도에 따른 평가기준에 대한 신념과 추구이미지 및 의복태도의 차이연구)

  • 고애란
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.2
    • /
    • pp.263-272
    • /
    • 1994
  • The purpose of this study was to identify factors that might distinguish those who have a high level of Intention to purchase each of domestic, foreign designer and national brand jeans from those who have a low intention in terms of evaluative criteria belief, ideal jeans image and clothing altitude. The sample consisted of 198 male and 197 female students from five universities in Seoul. The questionnnaire consisted of 50 seven-point semantic differential scales dealing with evaluative criteria and ideal jeans image, beliefs about and intention to purchase domestic, foreign designer and foreign national brand jeans and 25 Likert type clothing attitude scales. Based on a series of t-tests the results showed that color and design were the most influencing factor among the evaluative criteria belief, regardless of brand type, while durability, accessory, sewing were the least. Sexy image, brand consciousnees and fashion interest were the important factor that distinguish high intention to purchase group fro)m low intention to purchase group.

  • PDF

A Study on a Quantified Structure Simulation Technique for Product Design Based on Augmented Reality (제품 디자인을 위한 증강현실 기반 정량구조 시뮬레이션 기법에 대한 연구)

  • Lee, Woo-Hun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.85-94
    • /
    • 2005
  • Most of product designers use 3D CAD system as a inevitable design tool nowadays and many new products are developed through a concurrent engineering process. However, it is very difficult for novice designers to get the sense of reality from modeling objects shown in the computer screens. Such a intangibility problem comes from the lack of haptic interactions and contextual information about the real space because designers tend to do 3D modeling works only in a virtual space of 3D CAD system. To address this problem, this research investigate the possibility of a interactive quantified structure simulation for product design using AR(augmented reality) which can register a 3D CAD modeling object on the real space. We built a quantified structure simulation system based on AR and conducted a series of experiments to measure how accurately human perceive and adjust the size of virtual objects under varied experimental conditions in the AR environment. The experiment participants adjusted a virtual cube to a reference real cube within 1.3% relative error(5.3% relative StDev). The results gave the strong evidence that the participants can perceive the size of a virtual object very accurately. Furthermore, we found that it is easier to perceive the size of a virtual object in the condition of presenting plenty of real reference objects than few reference objects, and using LCD panel than HMD. We tried to apply the simulation system to identify preference characteristics for the appearance design of a home-service robot as a case study which explores the potential application of the system. There were significant variances in participants' preferred characteristics about robot appearance and that was supposed to come from the lack of typicality of robot image. Then, several characteristic groups were segmented by duster analysis. On the other hand, it was interesting finding that participants have significantly different preference characteristics between robot with arm and armless robot and there was a very strong correlation between the height of robot and arm length as a human body.

  • PDF

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

Research and Consideration of Eco-friendly Radiation Shielding using CT Contrast Agent (CT 조영제를 이용한 친환경적인 방사선 차폐에 관한 연구 및 고찰)

  • Sung-Gil Kim;Yeon-Sang Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.827-833
    • /
    • 2023
  • CT(Computed Tomography) contrast agents are commonly used in general hospitals and university hospitals when taking radiographic examinations. The CT contrast medium contains a mixture of a substance called "Iodine", which absorbs radiation energy and makes it appear white in the CT image, further improving the image quality. In addition, the CT contrast agent, which moves like blood in the blood vessels, clearly differentiates it from muscle and water, so CT contrast agents are widely used in hospitals. These CT contrast agents absorb X-rays, but in order to absorb X-rays, they must have a high density or a high radiation absorption coefficient. Since the CT contrast agent is injected into the blood vessels, if the density is high, the blood vessels are strained and the patient is in shock. For this reason, it is necessary to match the density similar to that of water and always pay attention to side effects. In addition, the amount of CT contrast medium is adjusted according to the patient's body shape, and the remaining contrast medium is discarded. However, This study tried to find out the idea of recycling it as a radiation shielding material. Since the CT contrast medium has a high radiation absorption coefficient at a density similar to that of water, the amount to absorb radiation is adjusted, the amount of contrast medium and the amount of water are adjusted, and the amount of radiation absorbed is determined by mixing with water. In addition, a study was conducted to find out the result of the difference in radiation absorption in various ways by comparing the radiation quality coefficient and absorption coefficient with other substances or materials in an environmentally friendly method harmless to the human body by mixing CT contrast medium and water.