• Title/Summary/Keyword: 인체 운동

Search Result 272, Processing Time 0.027 seconds

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.

Human Motion Recognition using Fuzzy Inference System (인체동작구분 퍼지추론시스템)

  • Jin, Gye-Hwan;Lee, Sang-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.722-727
    • /
    • 2009
  • The technology of distinguishing human motion states is required in the areas of measuring and analyzing biosignals changing according to physical activities, diagnosing sleep disorder, screening the effect of treatment, examining chronic patients' kinetic state, prescribing exercise therapy, etc. The present study implemented a fuzzy inference system based on fuzzy rules that distinguish human motion states (tying, sitting, walking, and running) by acquiring and processing data of LAA, TAA, L-MAD, and T-MAD using ADXL202AE of Analog Devices embedded in an armband. The membership degree and fuzzy rules in each area of input (LAA, TAA, L-MAD, and T-MAD) and output (tying, sitting, walking, and running) data used here were determined using numeric data obtained from experiment. In the results of analyzing data for simulation generated in order of tying$\rightarrow$walking$\rightarrow$running$\rightarrow$tying, the sorting rate for motion states tying, sitting, walking, and running was 100% for each motion.

Estimation of Human Lower-Extremity Muscle Force Under Uncertainty While Rising from a Chair (의자에서 일어서는 동작 시 불확실성을 고려한 인체 하지부 근력 해석)

  • Jo, Young Nam;Kang, Moon Jeong;Chae, Je Wook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1147-1155
    • /
    • 2014
  • Biomechanical models are often used to predict muscle and joint forces in the human body. For estimation of muscle forces, the body and muscle properties have to be known. However, these properties are difficult to measure and differ from person to person. Therefore, it is necessary to predict the change in muscle forces depending on the body and muscle properties. The objective of the present study is to develop a numerical procedure for estimating the muscle forces in the human lower extremity under uncertainty of body and muscle properties during rising motion from a seated position. The human lower extremity is idealized as a multibody system in which eight Hill-type muscle force models are employed. Each model has four degrees of freedom and is constrained in the sagittal plane. The eight muscle forces are determined by minimizing the metabolic energy consumption during the rising motion. Uncertainty analysis is performed using a first-order reliability method. The one-standard-deviation range of agonistic muscle forces is calculated to be about 150-300 N.

A Study on a Method of Rigid Body Movement Analysis -Mainly on Mandible Movement Parameter Determination- (강체 운동 해석 기법에 관한 연구 -하악골 운동 파라미터 결정 기법을 주로-)

  • Jung, Chae-Young;Song, Chul;Lee, Kwon-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.4
    • /
    • pp.301-314
    • /
    • 1990
  • This paper is an attempt to use vision-pattern recognition technique to analyzation on a hidden rigid body motion. Specially shaped rod, rigidly connected to the hidden body is extended to the ouside of hiding object so that a camera may catch the motion data. Every motion can be described with translatio and rotation. But translation can be explanied with ratation with a infinitly far centroid. Motion analysis is to find the instantaneous centroid and ratation angle. With this theory jaw motion is analyzed in this paper.

  • PDF

Development of a Excercise Prescription Device using EMG Signal (근전도 신호를 이용한 운동 처방 장치 개발)

  • Kim, Ho-joon;Lee, Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.152-157
    • /
    • 2012
  • In this paper, we develop a muscle exercise prescription system and present a prescription method by analyzing bioelectric signal of human muscles. This system is designed to give right exercise prescriptions include strength, duration, frequency of exercise after diagnosing personal body condition using EMG(Electromyography). With the help of these prescriptions all users can keep there optimum exercise status and avoid excess exercise symptom and, we van utilize in all the measurements like abnormal posture, muscle power, muscle regidity, muscle fatigue, muscle balance. Also easily accessable system can offer variable utilizations such as in health care center, sports center, social welfare center, social medical center, school, and kinder garden.

Correlation of Human Carpal Motion and Electromyogram (인체 수관절 운동과 근전도의 상관관계)

  • Chun, Han-Yong;Kim, Jin-Oh;Park, Kwang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1393-1401
    • /
    • 2010
  • In this experimental study, we have examined the correlation between a human carpal motion and a surface electromyogram. The carpal motion patterns have been identified and the main muscles involved in the carpal motion have been determined by investigating the anatomical structure of a carpal. The torque acting against the carpal motion has been applied by using a device for carpal rehabilitation training, and the surface electromyogram signal corresponding to the torque at the main muscles has been measured. The root-mean-square (RMS) magnitude of the surface electromyogram signal has been calculated and used to analyze the correlation between the surface electromyogram signal and carpal motion. The experimental results have proved that for carpal torque values below $0.1\;N{\cdot}m$, the RMS magnitude of the surface electromyogram signal is linearly proportional to the carpal torque magnitude and that the carpal torque magnitude is linearly proportional to the cross-sectional area of the carpal muscles. Further, the analysis of the contribution of each muscle to the carpal motion has shown that the contribution of the most dominant muscle is consistently 60%. These three results can be applied to develop more sophisticated devices or robots for carpal rehabilitation training.

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.

A Motion Control utilizing Human Motions (사람의 움직임을 쓴 운동 제어)

  • 최원수;손호영;윤중선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.243-247
    • /
    • 1996
  • A general procedure for motion capture and mimic system has been delineated. Utilizing sensors operated in the magnetic fields, complicated and optimized movements are easily digitized to analyze and reproduce. The system consists of a motion capture module, a motion visualization module, a motion plan module, a motion mimic module, and a GUI module. Design concepts of the system are modular, open, and user friendly to ensure the overall system performance. This procedure is being implemented on a virtual cyber cube. and an inverted pendulum. With modifications, this procedure can applied for complicated motion controls.

  • PDF

Force Analysis of Wrist Joint to Develop Wrist Implant and Mechanical Hand Using Optimization Technique and Finite Element Method (인공수근관절과 의수를 개발하기 위한 최적설계법과 유한요소법에 의한 수근관절의 역학적해석)

  • Jung-Soo Han
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.178-184
    • /
    • 1997
  • Many mathematical techniques have been developed to determine the muscle forces and force distribution in biomechanical human model, because it is so important to understand internal forces resisting external loading. However, a three-dimensional mathematical model of wrist joint, which is essential to develop solid modeling and artificial wrist joint, has not been well developed. This study proposed to define three-dimensional mathematical model of distal radius and ulna of the human wrist and to develop a detailed two-dimensional finite element through comparisons to existing analytical models and experimental tests. This mathematical model were accurately recreated, allowing the internal tendon force as well as force transmission and distribution through the distal radios and ulna during dynamic loadings. The results found in this study indicate and support the findings of other investigator that cyclic loading condition results in higher compression force on distal radius and ulna and may be source of wrist disorder.

  • PDF

Constraint-Based Modeling of Human Hands (구속조건 기반의 손 모델)

  • Choi, Haeock;Song, Mankyun;Jun, Byoungmin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Technology for the realistic model and the motion control of human is applied to many areas of computer graphics, virtual reality and computer simulations. Human body is a multi-articular body. Generally, to create a human model and motions. articulated body models are generated and their motions are controlled based upon kinematics. The hand of the human consists of many small articulations and each articulations have a various degree of freedom. This paper presents a model of human hand which is based on the two kinds of constraints to control the motions of the hand realistically. To build a hand model, we experimented the anatomy of the human hand, and the diverse motions of the hand are tested.

  • PDF