• Title/Summary/Keyword: 인체 기준점

Search Result 76, Processing Time 0.029 seconds

CT Simulation Technique for Craniospinal Irradiation in Supine Position (전산화단층촬영모의치료장치를 이용한 배와위 두개척수 방사선치료 계획)

  • Lee, Suk;Kim, Yong-Bae;Kwon, Soo-Il;Chu, Sung-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • Purpose : In order to perform craniospinal irradiation (CSI) in the supine position on patients who are unable to lie in the prone position, a new simulation technique using a CT simulator was developed and its availability was evaluated. Materials and Method : A CT simulator and a 3-D conformal treatment planning system were used to develop CSI in the supine position. The head and neck were immobilized with a thermoplastic mask in the supine position and the entire body was immobilized with a Vac-Loc. A volumetrie image was then obtained using the CT simulator. In order to improve the reproducibility of the patients' setup, datum lines and points were marked on the head and the body. Virtual fluoroscopy was peformed with the removal of visual obstacles such as the treatment table or the immobilization devices. After the virtual simulation, the treatment isocenters of each field were marked on the body and the immobilization devices at the conventional simulation room. Each treatment field was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR)/digitally composite radiography (DCR) images from the virtual simulation. The port verification films from the first treatment were also compared with the DRR/DCR images for a geometrical verification. Results : CSI in the supine position was successfully peformed in 9 patients. It required less than 20 minutes to construct the immobilization device and to obtain the whole body volumetric images. This made it possible to not only reduce the patients' inconvenience, but also to eliminate the position change variables during the long conventional simulation process. In addition, by obtaining the CT volumetric image, critical organs, such as the eyeballs and spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. The differences between the DRRs and the portal films were less than 3 mm in the vertebral contour. Conclusion : CSI in the supine position is feasible in patients who cannot lie on prone position, such as pediatric patienta under the age of 4 years, patients with a poor general condition, or patients with a tracheostomy.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Preliminary semi-quantitative evaluation of developed latent fingerprints on non-porous surface with natural powders using a densitometric image analysis (비 다공성 표면에서 천연분말로 현출된 잠재지문의 농도계 이미지분석을 이용한 예비적인 반 정량적 평가)

  • Kim, Eun-Mi;Heo, Bo-Reum;Ok, Yun-Seok;Kim, Jin-Kyung;Joung, In-Nam;Choi, Sung-Woon
    • Analytical Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.283-292
    • /
    • 2016
  • Conventional fingerprint powders used during crime scene investigations pose potential health hazards. Thus, multiple natural replacement powders, including squid ink powder, indigo and rice powder were used to develop (visualize) latent fingerprints on non-porous surfaces (e.g., glass, plastic and tile). Fingerprints developed using the natural powders were compared using the Automatic Fingerprint Identification System (AFIS) with those developed with traditional black powder. The peak areas of ridges were also compared using densitometric image analyses. Collectively, objective and quantitative evaluation methods were developed. The effectiveness of natural powders varied depending on the surface but, in general, squid ink powder performed well on most surfaces. Indigo powder performed well on tile surfaces, while rice powder performed well on glass surfaces. Plastic was the most difficult surface from which to develop fingerprints. Image analysis using Field Emission Scanning Electron Microscopy (SEM) demonstrated the importance of the size and shape of natural powder particles to properly adhere to the ridges. Although densitometric image analyses did not correlate the number of minutiae and ridge peak areas, an unbiased, objective evaluation method would be possible using image analyses with a reference image. Additional experimentation will yield safe and cost-effective natural powders with which adequate fingerprint development can be performed.

Operation of Advanced Water Treatment Processes for Downstream River Source Water (상수원수의 고도정수처리 공정 파일롯 운전 연구)

  • Wang, Chang-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Down Stream K River has high COD (4-10 mg/L) and high $NH_3$-N concentration (3.5 mg/L during winter period). Although $NH_3$-N itself is not reported harmful at this level, it must be removed to meet drinking water standard (0.5 mg/L). We constructed a pilot plant modifying the processes of conventional drinking water facilities. Prechlorination and powdered activated carbon (PAC) dechlorination was adopted prior to a flocculation tank to remove ammonia and prevent disinfection byproducts (DBPs) formation. Also, GAC processes was included after sand filter to remove residual DOC. This pilot having a capacity of 36 ton/day was operated for one year. The GAC processes were successful to remove ammonia and many organic pollutants (DOC, MBAS, UV-254 nm absorbance, etc). Influent DOC concentrations were very high as 3~6 mg/L throughout the plant operation. It was impossible to achieve 1.0 mg/L effluent DOC, indicating that bed depth (2 m) should be increased to achieve more strict DOC quality standards. When $Cl_2$ dose was well controlled ($Cl_2/NH_3$-N ratio 10~11 on a weight basis), $NH_3$-N removal was 98% and THMs was very low possibly due to low free residual chlorine and PAC dechlorination.

A Study on Harmonized Classification and Categorization for Physical Hazards of Chemicals in Korea (국내 화학물질의 물리적위험성 분류·구분 단일화에 관한 연구)

  • Lee, BongWoo;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.30-41
    • /
    • 2017
  • Although chemical substances have greatly contributed to prosperous human life and industrial development and made a great contribution to humanity, some dangerous substances are harmful to health and the environment. Thus, so long ago developed countries have also established strict safety standards. Korea is growing into a major chemical market, accounting for 3.4% of the global chemical market. The domestic laws related to chemical substances are similar to foreign countries, but there are many differences in detail, posing a lot of risks to safety, health and the environment as well as causing many problems in industry. In order to improve these problems, this study carried out to unify the domestic chemical law and the international standardization system (GHS) and to solve the trade barriers in the export and import by industry. In addition, researchers proposed a unified approach to classification and division of physical hazards, as advanced as developed nations, as a basis for prevention and response to accidents in dangerous goods.

Analysis of heavy metals from soils with magnetite immobilized functional groups (기능성기가 결합된 자성체를 이용한 토양의 중금속 분석)

  • Hyungsuk So;Nah, In-Wook;Hwang, Kyung-Yub
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.156-156
    • /
    • 2003
  • 유럽의 여러나라들의 경우 토양내 중금속의 허용치는 그 사용 목적에 따라 다르게 책정되고 있으며 1999년에 제정된 독일의 새로운 토양보전법에서도 토양의 사용목적별로 중금속 허용치를 달리 정하고 있다. 여기서 중금속 농도를 측정하기 위한 방법으로는 DIN(독일 공업규격)에서 정하고 있는 증류수추출법과 왕수추출법이 채택되고 있다. 그러나 이 2가지 방법들은 토양의 중금속분석에서 가장 큰 factor로 작용하는 것이 pH인데 반하여 pH가 7인 증류수와 pH가 0인 왕수를 사용함으로써 실제환경에 적용하기에는 많은 무리수를 내포하고 있으며 차츰 적당치 못한 것으로 판명되고 있다. 실질적인 중금속의 유해성 여부는 토양에서의 그 중금속의 용해도와 유동성으로 결정되는데 강한 산성비가 내린다고 가정하였을 때 비의 pH가 약 4 정도이고 이 경우 식물 뿌리 부분의 pH는 5 정도가 되므로 pH를 기준으로 할 때 잠재적으로 유동가능한 중금속을 분석하는 데에는 pH 4.5 에서 EDTA 추출이 가장 적당하고 또한 이를 토대로 토양내 중금속 허용치를 정하는 것이 합리적이라고 하겠다. 그러나 EDTA는 pH 4에서 부분적으로 Proton과 결합되어 Metal Chelate로의 능력을 잃게 되고 또한 식물 뿌리의 중금속 흡착을 Simulation할 수 없어 불리한 점이 있다. 또한 EDTA는 분해기간이 길고 인체에 해롭다는 것이 알려지고 있어 점점 사용이 어려워지고 있다. 본 연구에서는 토양에 함유된 유동가능한 중금속농도분석을 보다 적절히 하기 위한 방법으로 EDTA와 같이 Carboxyl기가 결합된 고분자 자성체를 이용해 토양의 중금속을 분석하는 것을 제안하였고 분석을 위한 중금속 추출 시 토양시료와 증류수 그리고 고분자 자성체만을 사용하여 근본적으로 토양에서 유동 가능성이 있는 중금속만을 추출하였다. 분석실험은 토양의 Cd2+ 와 Pb2+를 대상으로 행하여졌으며, 여러 토양에서 추출 분석한 결과를 EDTA분석결과와 비교하였다. 실험결과, 중금속은 매우 신속하게 고분자 자성체와 결합하였고, 그 후 자성체를 외부 자장으로 모은 후 산으로 용해시키고, 결합된 중금속은 Graphite furnace AAS로 분석함으로써 빠르고 효율적으로 분석실험을 수행할 수 있음을 알 수 있었다. 한편, 실험에서 나타난 수치들을 비교 검토한 결과 토양 분석시 sandy soil에서는 자성체를 이용한 분석이 EDTA에 의한 방법보다 더 높은 추출도를 보인 반면, silt 함량이 많은 토양의 경우에서 EDTA분석에서 더 높은 중금속 추출도를 보였다.

  • PDF

Mechanical Properties and Flexural Behavior of Recycled PET Fiber Reinforced Eco-Friendly Hwang-toh Concrete (재생 PET 섬유로 보강된 친환경 황토 콘크리트의 역학적 특성과 휨 거동)

  • Kim, Sung-Bae;Yi, Na-Hyun;Kim, Hyun-Young;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.152-159
    • /
    • 2010
  • Recently, the public interest in eco-friendly material and structure has been increasing and many Hwang-toh researches are being actively performed. Hwang-toh is one of the traditional environment friendly construction materials used as a construction and plastering material. Hwang-toh has many advantages as construction material due to its high heat storage capacity, auto-purification, antibiotic ability, and infrared ray emission characteristics. But, currently it has not been developed into construction material and used in modern construction due to its low strength and dry shrinkage cracking prone characteristics. According to the recent researches and study results, Hwang-toh can be used as a natural pozzolanic material like fly-ash or pozzolan. In this study, mechanical properties and structural flexure behavior experiments of slag, recycled PET fiber, and Hwang-toh added concrete are carried out. The test results showed that drying shrinkage of concrete mixed with Hwang-toh has lower compressive strength and elastic modulus than those of control cement concrete specimen, but it has the similar flexural behavior in reinforced concrete beams.

Consumer Intention to Purchase Domestic/Foreign Brand Jeans;Beliefs, Attitude, and Individual Characteristics. (국내 및 외국 상표 청바지의 구매의도에 따른 평가기준에 대한 신념과 추구이미지 및 의복태도의 차이연구)

  • 고애란
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.2
    • /
    • pp.263-272
    • /
    • 1994
  • The purpose of this study was to identify factors that might distinguish those who have a high level of Intention to purchase each of domestic, foreign designer and national brand jeans from those who have a low intention in terms of evaluative criteria belief, ideal jeans image and clothing altitude. The sample consisted of 198 male and 197 female students from five universities in Seoul. The questionnnaire consisted of 50 seven-point semantic differential scales dealing with evaluative criteria and ideal jeans image, beliefs about and intention to purchase domestic, foreign designer and foreign national brand jeans and 25 Likert type clothing attitude scales. Based on a series of t-tests the results showed that color and design were the most influencing factor among the evaluative criteria belief, regardless of brand type, while durability, accessory, sewing were the least. Sexy image, brand consciousnees and fashion interest were the important factor that distinguish high intention to purchase group fro)m low intention to purchase group.

  • PDF

The Effect of Photoneutron Dose in High Energy Radiotherapy (10 MV 이상 고에너지 치료 시 발생되는 광중성자의 영향)

  • Park, Byoung Suk;Ahn, Jong Ho;Kwon, Dong Yeol;Seo, Jeong Min;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Purpose: High-energy radiotherapy with 10 MV or higher develops photoneutron through photonuclear reaction. Photoneutron has higher radiation weighting factor than X-ray, thus low dose can greatly affect the human body. An accurate dosimetric calculation and consultation are needed. This study compared and analyzed the dose change of photoneutron in terms of space according to the size of photon beam energy and treatment methods. Materials and Methods: To measure the dose change of photoneutron by the size of photon beam energy, patients with the same therapy area were recruited and conventional plans with 10 MV and 15 MV were each made. To measure the difference between the two treatment methods, 10 MV conventional plan and 10 MV IMRT plan was made. A detector was placed at the point which was 100 cm away from the photon beam isocenter, which was placed in the center of $^3He$ proportional counter, and the photoneutron dose was measured. $^3He$ proportional counter was placed 50 cm longitudinally superior to and inferior to the couch with the central point as the standard to measure the dose change by position changes. A commercial program was used for dose change analysis. Results: The average integral dose by energy size was $220.27{\mu}Sv$ and $526.61{\mu}Sv$ in 10 MV and 15 MV conventional RT, respectively. The average dose increased 2.39 times in 15 MV conventional RT. The average photoneutron integral dose in conventional RT and IMRT with the same energy was $220.27{\mu}Sv$ and $308.27{\mu}Sv$ each; the dose in IMRT increased 1.40 times. The average photoneutron integral dose by measurement location resulted significantly higher in point 2 than 3 in conventional RT, 7.1% higher in 10 MV, and 3.0% higher in 15 MV. Conclusion: When high energy radiotherapy, it should consider energy selection, treatment method and patient position to reduce unnecessary dose by photoneutron. Also, the dose data of photoneutron needs to be systematized to find methods to apply computerization programs. This is considered to decrease secondary cancer probabilities and side effects due to radiation therapy and to minimize unnecessary dose for the patients.

  • PDF

A Study on Superficial Dose of 6MV-FFF in HalcyonTM LINAC: Phantom Study (HalcyonTM 선형가속기 6MV-FFF 에너지의 표재 선량에 대한 고찰: Phantom Study)

  • Choi, Seong Hoon;Um, Ki Cheon;Yoo, Soon Mi;Park, Je Wan;Song, Heung Kwon;Yoon, In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.31-39
    • /
    • 2020
  • Purpose: The aims of this study were to compare the superficial dose with Optically Stimulated Luminescence Dosimeter(OSLD) measurement and Treatment Planning System(TPS) calculation for 6MV-Flattening Filter Free(FFF) energy using HalcyonTM and TrueBeamTM. Materials and methods: Phantom study was performed using the CT images of human phantom. In the treatment planning system, the Planning Target Volume(PTV) was contoured which is similar to Glottic cancer. Furthermore, Point(M), Point(R), and Point(L) were contoured at the iso-center of head and neck region and 5mm bolus was applied to the body contour. Each treatment plans using 6MV-FFF energy from HalcyonTM and TrueBeamTM with static Intensity Modulated Radiation Therapy(IMRT) and Volumetric Modulated Arc Therapy(VMAT) were established with eclipse. To reproduce the same position as the TPS, OSLDs were placed at the iso-center point and 5mm bolus was applied to compare the error rate after the dose delivery. Result: The results of the study using human phantom are as follows. In case of HalcyonTM, the mean absolute error rates of the point dose using the treatment planning system and the dose measured by OSLD were 1.7%±1.2% for VMAT and 4.0±2.8% for IMRT. Also TrueBeamTM was identified as 2.4±0.4% and 8.6±1.8% respectively for VMAT and IMRT. Conclusion: Through the results of this study, TrueBeamTM confirmed that the average error rate was 2.4 times higher for VMAT and 3.6 times higher for IMRT than HalcyonTM. Therefore, based on the results of this study, If we need a more accurate dose assessment for the superficial dose, It is expected that using HalcyonTM would be better than TrueBeamTM.