• Title/Summary/Keyword: 인체 골격

Search Result 124, Processing Time 0.03 seconds

Realtime 3D Human Full-Body Convergence Motion Capture using a Kinect Sensor (Kinect Sensor를 이용한 실시간 3D 인체 전신 융합 모션 캡처)

  • Kim, Sung-Ho
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.189-194
    • /
    • 2016
  • Recently, there is increasing demand for image processing technology while activated the use of equipments such as camera, camcorder and CCTV. In particular, research and development related to 3D image technology using the depth camera such as Kinect sensor has been more activated. Kinect sensor is a high-performance camera that can acquire a 3D human skeleton structure via a RGB, skeleton and depth image in real-time frame-by-frame. In this paper, we develop a system. This system captures the motion of a 3D human skeleton structure using the Kinect sensor. And this system can be stored by selecting the motion file format as trc and bvh that is used for general purposes. The system also has a function that converts TRC motion captured format file into BVH format. Finally, this paper confirms visually through the motion capture data viewer that motion data captured using the Kinect sensor is captured correctly.

Analysis of stair walking characteristics for the development of exoskeletal walking assist robot (외골격 보행보조로봇 개발을 위한 정상인의 계단보행특성 분석)

  • Cho, H.S.;Chang, Y.H.;Ryu, J.C.;Mun, M.S.;Kim, C.B.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The mechanical system of wearable walking assist robot needs to be optimized for adapting with human body structure and the planned control algorithm should have a secure procedure when a incongruity situation which can cause musculoskeletal injury occurs because a wearable robot is attached to a body. The understanding of walking or musculoskeletal motions characteristics must be preceeded and analyzed for developing novel wearable walking assist robot. In this study we tried to find out the capacities of powers and torques of joint actuators to design optimized performances of system and to obtain the analysis data to figure out the characteristics of joint movements during some types of walk. The major types of walk and motion are stair climbing and descending, sit-to-stand motion, and slope walking. In this study all these motions were analyzed experimentally except slope walking.

  • PDF

Biomechanical Analysis and Evaluation Technology Using Human Multi-Body Dynamic Model (인체 다물체 동역학 모델을 이용한 생체역학 분석 및 평가 기술)

  • Kim, Yoon-Hyuk;Shin, June-Ho;Khurelbaatar, Tsolmonbaatar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.494-499
    • /
    • 2011
  • This paper presents the biomechanical analysis and evaluation technology of musculoskeletal system by multi-body human dynamic model and 3-D motion capture data. First, medical image based geometric model and material properties of tissue were used to develop the human dynamic model and 3-D motion capture data based motion analysis techniques were develop to quantify the in-vivo joint kinematics, joint moment, joint force, and muscle force. Walking and push-up motion was investigated using the developed model. The present model and technologies would be useful to apply the biomechanical analysis and evaluation of human activities.

Optimization of Hip Flexion/Extension Torque of Exoskeleton During Human Gait Using Human Musculoskeletal Simulation (인체 근골격 시뮬레이션을 활용한 인체 보행 시 외골격의 고관절 굴곡/신장 토크 최적화)

  • Hyeseon Kang;Jinhyun Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.117-121
    • /
    • 2023
  • Research on walking assistance exoskeletons that provide optimized torque to individuals has been conducted steadily, and these studies aim to help users feel stable when walking and get help that suits their intentions. Because exoskeleton auxiliary efficiency evaluation is based on metabolic cost savings, experiments on real people are needed to evaluate continuously evolving control algorithms. However, experiments with real people always require risks and high costs. Therefore, in this study, we intend to actively utilize human musculoskeletal simulation. First, to improve the accuracy of musculoskeletal models, we propose a body segment mass distribution algorithm using body composition analysis data that reflects body characteristics. Secondly, the efficiency of most exoskeleton torque control algorithms is evaluated as the reduction rate of Metabolic Cost. In this study, we assume that the torque minimizing the Metabolic Cost is the optimal torque and propose a method for obtaining the torque.

발목 운동 방법 - 벽과 수건을 이용한 발목 운동 방법

  • Kim, Ji-Hyeon
    • 월간산업보건
    • /
    • s.387
    • /
    • pp.76-79
    • /
    • 2020
  • 인체면적의 고작 2%를 차지하는 발바닥은 체중의 98%를 지탱하고 있습니다. 그래서인지 근골격계 질환 중에서도 손상이 빈번하게 일어나는 부위가 발목관절인데요. 스포츠 활동뿐만 아니라 일상생활 중에도 손상이 잘 일어나며 한번 손상되면 발목관절 안정성이 떨어지게 되어 재손상이 쉽게 발생합니다. 이에 발목관절 건강을 지킬 수 있는 적절한 예방운동이 꼭 필요합니다.

  • PDF

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF