• Title/Summary/Keyword: 인체진동모델

Search Result 35, Processing Time 0.018 seconds

A prolate spheroidal head modeling of head related transfer function based on ray tracing formula (선추적공식을 이용한 머리전달함수의 회전타원체 형상 모델링)

  • Jo, Hyun;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.934-938
    • /
    • 2008
  • To customize individual characteristics of HRTF, a spherical model has been used for structural modeling technique. A pseudo-code of prolate spheroidal HRTF caused by incident acoustic point source is already developed, and it can be used a head shadow filter for structural modeling of HRTF. In this research, to see the necessity and efficiency of spheroidal head modeling, ITD optimization is performed on CIPIC HRTF database. From given cost function, ITD-optimized spheroidal head model, whose ITD information is the most matched version of measured ITD information, is found by varying head parameters subject by subject. By comparing results of ITD-optimized spheroids and ITD-optimized spheres, we concluded that a spherical head model is more efficient way of generating head shadow effect than a spheroidal head model does.

  • PDF

A Musculoskeletal Model of a Human Lower Extremity and Estimation of Muscle Forces while Rising from a Seated Position (인체 하지부 근골격계 모델 및 의자에서 일어서는 동작 시 근력 예측)

  • Jo, Young-Nam;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.502-508
    • /
    • 2012
  • An analytical model for a human body is important to predict muscle and joint forces. Because it is difficult to estimate muscle or joint forces from a human body, the objective of this study is the development of a reliable analytical model for a human body to evaluate the lower extremity muscle and joint forces. The musculoskeletal system of the human lower extremity is modeled as a multibody system employing the Hill-type muscle model. Muscle forces are determined to minimize energy consumption, and we assume that motion is constrained in the sagittal plane. Muscle forces are calculated through an equilibrium analysis while rising from a seated position. The musculoskeletal model consists of four segments. Each segment is a rigid body and connected by frictionless revolute joints. Muscles of the lower extremity are simplified to seven muscles with those that are not related to the sagittal plane motion are ignored. Muscles that play a similar role are combined together. The results of the present study are compared with experimental results to validate the lower extremity model and the assumptions of the present study.

Comparison and Analysis for Evaluation of Ride and SEAT Index through Theoretical Seat-Human Body Model and Vehicle Test (시트-인체 해석 모델링과 차량 주행 시험을 통한 차량 승차감 평가와 시트 지수의 비교 및 분석)

  • Son, In-Suk;Kim, Jung-Hoon;Kang, Yeon-June
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • A simplified model of seat-human body is presented to analyze vibrations of human body on a seat of vehicle. The theoretical model having seven degrees-of-freedom is composed of the inter-connected masses, springs and dampers. Until now, evaluation of ride comfort has been usually performed only through vehicle tests. This study aims to complement shortcomings of conventional vehicle tests in evaluation of ride comfort by using the theoretical model. The acceleration values of the human body are obtained from frequency response functions of the theoretical model. Thereafter, Ride and SEAT indexes are acquired by considering response characteristics of the human body for the 12 axes that are presented in BS 6841. A vehicle test is carried out to measure the acceleration values for the three parts of the human body such as upper body, hip and foot. Ride and SEAT indexes of the vehicle test are also obtained by considering the response characteristics of the human body, of which results are compared with the values from the theoretical model. It is found that the theoretical results are in good agreement with the experimental results.

Comfort Analysis of Mono-ski with Hydraulic Absorber (모노스키 유압 완충장치 특성에 따른 탑승 안락감 평가)

  • Cho, Hyeon-Seok;Park, Jin-Kook;Kim, Gyoo-Seok;Mun, Mu-Sung;Kim, Chang-Boo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.131-140
    • /
    • 2015
  • The mono-ski for the paraplegia designed to skiing is formed as seat bucket on the sled. The impact force transferred by snow surface during skiing is absorbed by the leg joints of normal human, but it is transferred to the human body on the seat when using mono-ski. Most of commercially available mono-ski have absorbing device and link mechanism between seat and ski mount in order to complement it. In this study we developed the comfort evaluation model that could provide skiing simulation of mono-ski with hydraulic damper and analyzed vibrational acceleration occurred during skiing uneven surface. The evaluation method used in this study is the international standard BS6841. We evaluated comfort performance of mono-ski in accordance with nozzle adjustment of hydraulic damper.

Implementation of Driver Fatigue Monitoring System (운전자 졸음 인식 시스템 구현)

  • Choi, Jin-Mo;Song, Hyok;Park, Sang-Hyun;Lee, Chul-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.711-720
    • /
    • 2012
  • In this paper, we introduce the implementation of driver fatigue monitering system and its result. Input video device is selected commercially available web-cam camera. Haar transform is used to face detection and adopted illumination normalization is used for arbitrary illumination conditions. Facial image through illumination normalization is extracted using Haar face features easily. Eye candidate area through illumination normalization can be reduced by anthropometric measurement and eye detection is performed by PCA and Circle Mask mixture model. This methods achieve robust eye detection on arbitrary illumination changing conditions. Drowsiness state is determined by the level on illumination normalize eye images by a simple calculation. Our system alarms and operates seatbelt on vibration through controller area network(CAN) when the driver's doze level is detected. Our algorithm is implemented with low computation complexity and high recognition rate. We achieve 97% of correct detection rate through in-car environment experiments.