• Title/Summary/Keyword: 인지망

Search Result 350, Processing Time 0.028 seconds

The Optimal Design of a Neural Network For Intelligent Information Retrieval (지능형 정보검색을 위한 신경망 설계)

  • 김성희;박상찬
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1995.08a
    • /
    • pp.21-24
    • /
    • 1995
  • 이 논문은 지능형 정보검색을 위한 신경망 시스팀을 구축하는데 있어서 신경망을 어떻게 디자인하는 것이 가장 이상적인지에 관해 기술한다. 구체적으로 말하면, 신경망 위상 (Network Topology) 와 학습매개변수 (Learning Parameter)들이 신경망 시스팀 성능에 어떠한 영향을 미치는 지에 대해 문헌조사를 통해 검토하고 있다. 그 결과 신경망 위상과 학습 매개변수는 정보검색을 위한 신경망 시스팀 효율성에 강하게 영향을 미치고 있으므로 신경망 설계시 이 요소들을 신중히 고려해서 결정해야 한다.

  • PDF

Investigation of Correlation Between Cognition/Emotion Styles and Judgmental Time-Series Forecasting Using a Self-Organizing Neural Network (자기 조직 신경망에 의한 인지/감성 유형의 시계열 직관 예측과의 상관성 조사)

  • Yoo Hyeon-Joong;Park Hung Kook;Cho Taekyung;Park Jongil
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.29-38
    • /
    • 2005
  • Although people frequently rely on intuition in managing activities, they rarely use it in developing effective decision-making support systems. In this paper, we investigate and compare the correlations between such characteristics as cognition and emotion characteristics and judgmental time-series forecasting accuracy by using a self-organizing neural network, and eventually aim to help build efficient decision-making atmosphere. The neural network used in this paper employs a self-supervised adaptive algorithm, and the feature of which is that it inherently can use correlation between input vectors by exchanging information between neuron clusters in the self-organizing layer during the training. Our experiments showed that both cognition and emotion characteristics had correlations with judgmental time-series forecasting, and that cognition characteristics had larger correlation than emotion characteristics. We also found that conceptual style had larger correlation than behavioral and analytical styles, and displeasure-sleepiness style had larger correlation than pleasure-arousal style with the forecasting.

The Application and Evaluation of Verbal Lexical-Semantic Network Using Automatic Word Clustering (단어클러스터링을 이용한 동사 어휘의미망의 활용 및 평가)

  • Kim, Hae-Gyung;Yoon, Ae-Sun
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2006.06a
    • /
    • pp.1-7
    • /
    • 2006
  • 최근 수년간 한국어를 위한 어휘의미망에 대한 관심은 꾸준히 높아지고 있지만, 그 결과물을 어떻게 평가하고 활용할 것인가에 대한 방안은 이루어지지 않고 있다. 본 논문에서는 단어클러스터링 시스템 개발을 통하여, 어휘의미망에 의해 확장되기 전후의 클러스터링을 수행하여 데이터를 서로 비교하였다. 단어클러스터링 시스템 개발을 위해 사용된 학습 데이터는 신문 말뭉치 기사로 총 68,455,856 어절 규모이며, 특성벡터와 벡터공간모델을 이용하여 시스템A를 완성하였다. 시스템B는 구축된 '[-하]동사류' 3,656개의 어휘의미를 포함하는 동사어휘의미망을 포함하여 확장된 것으로 확장대상정보를 선택하여 특성벡터를 재구성한다. 대상이 되는 실험 데이터는 '다국어 어휘의미망-코어넷'으로 클러스터링 결과 나타난 어휘들의 세 번째 층위까지의 노드 동일성 여부로 정확률 검수를 하였다. 같은 환경에서 시스템A와 시스템B를 비교한 결과 단어클러스터링의 정확률이 45.3%에서 46.6%로의 향상을 보였다. 향후 연구는 어휘의미망을 활용하여 좀 더 다양한 시스템에 체계적이고 폭넓은 평가를 통해 전산시스템의 향상은 물론, 연구되고 있는 많은 어휘의미망에 의미 있는 평가 방안을 확대시켜 나가야 할 것이다.

  • PDF

Recognition of Outdoor Scenery Containing Roads using Neural Network (신경망을 이용한 도로가 포함된 야외영상 인식)

  • Lee, Hyo-Jong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.2
    • /
    • pp.132-140
    • /
    • 2001
  • 야외에서 인지되는 자연 경치는 다양한 개체, 빛의 산란, 또는 변화를 주는 많은 요소들 때문에 컴퓨터 영상처리에서 인식하기가 쉽지 않다. 본 논문에서는 다층 인지 신경망을 이용하여 도로가 포함된 야외영상에 나타나는 개체들을 인식하는 방법을 연구하였다. 자연 영상을 영역화한 후, 각각의 영역들에 대하여 색상과 기하학적인 특성에 근거하여 특성벡터를 추출하고 이를 신경망에 입력하여 각 영역을 구분하는 2단계의 알고리듬을 제안한다. 먼저 야외 영상들을 개선된 영역 확장법과 병합과정에 의하여 개체별로 영역화하였다. 영역화된 연상은 자연 영상과 함께 영상 데이타베이스에 저장되고, 이 자료들을 이용하여 각 영역의 특성벡터를 계산하였다. 이 특성 벡터를 구성된 신경망의 입력층에 전달하면, 각 영역은 27개의 개체 중의 하나로 출력층에서 인식된다. 제안된 방법은 학습에 사용된 데이타, 학스베 사용되지 않은 새로운 데이타, 그리고 모두 합하여 놓은 데이타의 세가지 데이타 군에서 무작위로 선별하여 인식률을 측정하였다. 학습된 데이타에서는 99.4%까지의 인식률을 보여주었고, 학습되지 않은 데이타에 대해서도 최고 89.1%까지의 인식률을 나타내었다. 제안된 방법은 평균적으로 88.1%~97.9%의 인식률을 보여주어 자연 경치의 인식에 신뢰성이 있는 방법으로 사용될 수 있음을 증명하였다.

  • PDF

Emotion Prediction from Natural Language Documents ith Emotion Network (감정망을 활용한 자연언어 문서 상의 감정예측)

  • Min, Hye-Jin;Park, Jong-C.
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.191-199
    • /
    • 2004
  • 본 논문에서는 텍스트에 나타난 감정상태를 인지하는 모델을 제안하고, 이러한 모델을 활용하여 현재문장에서 나타난 감정 및 이후에 나타나게 될 감정상태들을 예측하는 시스템에 대하여 다룬다. 사용자의 감정을 인지하고 이에 대한 자연스러운 메시지, 행동 등을 통해 인간과 상호작용 할 수 있는 컴퓨터시스템을 구현하기 위해서는 현재의 감정상태뿐만 아니라 사용자 개개인의 정보 및 시스템과 상호작용하고 있는 상황의 정보 등을 통해 이후에 사용자가 느낄 수 있는 감정을 예측할 수 있는 감정모델이 요구된다. 본 논문에서는 파악된 이전의 감정상태 및 실제 감정과 표현된 감정간의 관계, 그리고 감정에 영향을 미친 주변대상의 특징 및 감정경험자의 목표와 행동이 반영된 상태-전이형태의 감정모델인 감정망(Emotion Network)을 제안한다. 감정망은 각 감정을 나타내는 상태(state)와 연결된 상태들 간의 전이(transition), 그리고 전이가 발생하기 위한 조건(condition)으로 구성된다. 본 논문에서는 텍스트 형태의 상담예시에 감정망을 활용하여 문헌의 감정어휘에 의해 직접적으로 표출되지 않는 감정을 예측할 수 있음을 보인다.

  • PDF

Improvement of Resource Utilization by Dynamic Spectrum Hole Grouping in Wideband Spectrum Cognitive Wireless Networks (광대역 스펙트럼 인지 무선망에서 동적 스펙트럼홀 그룹핑에 의한 자원이용률 향상)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2020
  • In this paper, we propose a dynamic spectrum hole grouping method that changes the grouping range of spectrum hole according to the resources amount required by secondary users in wideband spectrum cognitive wireless networks, and then the proposed method is applied to channel allocation for the secondary user service. The proposed method can improve waste of resources in the existing static spectrum hole grouping in virtue of grouping dynamically as much the predicted spectrum holes resources as secondary users require. Simulation results show that channel allocation method with the proposed dynamic grouping outperforms that with the static grouping method in resources utilization under acceptable secondary user service performance.

Cognitive User's Quality of Service Enhancement by using Spectrum Hole Grouping in Cellular Cognitive Radio Networks (셀룰러 인지 라디오 망에서 스펙트럼 홀 그룹핑에 의한 인지 사용자의 서비스 품질향상)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.322-327
    • /
    • 2019
  • In this paper, we propose first a scheme of grouping spectrum holes that are created in the multiple channels of primary users, and then by using the scheme we enhance quality of service (QoS) of wideband cognitive radio users in cellular cognitive radio networks. In our scheme, spectrum holes created in each primary channel are predicted by Wiener prediction process, and then the predicted spectrum holes happened in the same time are grouped into a group. The wideband cognitive radio users explore the group of spectrum holes to improve their QoS. Simulation results show that their handoff calls dropping rate and initial calls blocking rate are significantly reduced in our scheme, compared to those in the single primary channel.

Construct of Fuzzy Inference Network based on the Neural Logic Network (신경 논리 망을 기반으로 한 퍼지 추론 망 구성)

  • 이말례
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Fuzzy logic ignores some information in the reasoning process. Neural network is powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule-inference network. And the traditional propagation rule is modified. Experiments are performed to compare search costs by sequential searching and searching by priority. The experimental results show that the searching by priority is more efficient than the sequential searching as the size of the fuzzy inference network becomes larder and an the number of searching increases.

  • PDF

An Effective Frequency Sharing Method using Cognitive Radio in GSO Satellite Network (인지무선 라디오 기술을 이용한 효율적인 GSO 위성망 주파수 공유방법)

  • Jung, Won-Sik;Jang, Sung-Jeen;Cho, Jae-Bum;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.57-63
    • /
    • 2010
  • Many efficient frequency sharing methods are issued in present because of increasing users with various wireless communication terminals. In the satellite communications, the service coverage is generally very wide so frequency sharing with terrestrial system is essentially needed, and the research is progressing dynamically related on this frequency sharing method. But if we adopt the terrestrial system which is commonly used, it can't avoid the interference from terrestrial service to satellite service. Therefore, this paper will introduce methods for reducing the interference from terrestrial station to earth station using cognitive radio system Satellite system is guaranteed with decreasing interference from terrestrial stations using Genetic Algorithm based power control method. Furthermore, terrestrial systems can have increased QoS because the frequency reuse factor in proposed method is higher than existing methods.

Recurrent Neural Network Based Spectrum Sensing Technique for Cognitive Radio Communications (인지 무선 통신을 위한 순환 신경망 기반 스펙트럼 센싱 기법)

  • Jung, Tae-Yun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.759-767
    • /
    • 2020
  • This paper proposes a new Recurrent neural network (RNN) based spectrum sensing technique for cognitive radio communications. The proposed technique determines the existence of primary user's signal without any prior information of the primary users. The method performs high-speed sampling by considering the whole sensing bandwidth and then converts the signal into frequency spectrum via fast Fourier transform (FFT). This spectrum signal is cut in sensing channel bandwidth and entered into the RNN to determine the channel vacancy. The performance of the proposed technique is verified through computer simulations. According to the results, the proposed one is superior to more than 2 [dB] than the existing threshold-based technique and has similar performance to that of the existing Convolutional neural network (CNN) based method. In addition, experiments are carried out in indoor environments and the results show that the proposed technique performs more than 4 [dB] better than both the conventional threshold-based and the CNN based methods.