• Title/Summary/Keyword: 인젝터 노즐 홀 직경

Search Result 5, Processing Time 0.019 seconds

Design Sensitivity Estimation of Injector Nozzle Hole Considering Cavitation (캐비테이션에 관한 인젝터 노즐 홀의 설계민감도 평가)

  • Yeom, Jeong Kuk;Ha, Hyeong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1361-1369
    • /
    • 2013
  • This study performs a computational fluid dynamics (CFD) analysis of the inner flow of a multihole injector nozzle by using ANSYS CFX 13.0. Based on the obtained results, a design of experiment (DOE) was performed and applied to investigate the effects of injector nozzle design parameters on cavitation. To analyze the design sensitivity and signal-to-noise ratio (S/N ratio), the hole diameter, hole length, hole angle, and K-factor of the nozzle hole were selected as design parameters, and the effect of these parameters was investigated at 16 experimental points. Consequently, it was found that the effect of the K-factor on the cavitation and inner flow of the injector nozzle is the greatest. Thus, the selection of a suitable K-factor is important in nozzle design considering cavitation flow.

An Investigation on the Spray Characteristics of DME with Variation of Nozzle Holes Diameter using the Common Rail Fuel Injection System (인젝터 노즐 홀 직경의 변화에 따른 DME 커먼레일 연료 분사 시스템의 분무 특성에 관한 연구 II)

  • Lee, Sejun;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • DME spray characteristics were investigated about varied ambient pressure and fuel injection pressure using the DME common rail fuel injection system when the nozzle holes diameter is varied. The common rail fuel injection system with DME cooling system was used since DME has properties of compressibility and vaporization in atmospheric temperature. The fuel injection quantity and spray characteristics were measured. The spray analysis parameters were spray shape, penetration length, and spray angle at six nozzle holes. Three types of injector were used, the nozzle holes diameter were 0.166 mm (Injector 1), 0.250 mm (Injector 2), and 0.250 mm with enlargement of orifice hole from 0.6 mm to 1.0 mm (Injector 3). The fuel injection pressure was varied by 5MPa from 35 to 70MPa when the ambient pressure was varied 0, 2.5, and 5MPa. When using Injector 3 in comparison to the others, the DME injection quantity was increased 1.69 ~ 2.02 times. Through this, it had the similar low heat value with diesel which was injected Injector 1. Among three types of injector, Injector 3 had the fastest development velocity of penetration length. In case of spray angle, Injector 2 had the largest spray angle. Through these results, only the way enlargement the nozzle holes diameter is not the solution of DME low heat value problem.

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (1) Comparison of Injection and Macroscopic Spray Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (1) 분사 및 거시적 분무특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to compare the injection and spray characteristics of single-hole GDI injectors using injection rate and mie-scattering spray images. Five types of single-hole injectors with different nozzle hole diameters were used, and the spray rate, spray tip penetration, spray area, and spray width were analyzed. As a result, the diameter of the nozzle hole had a direct effect on the injection and spray characteristics. It was confirmed that the larger the diameter of the nozzle hole, the higher the injection quantity, the spray tip penetration, the spray area, and the spray width. In addition, it was confirmed that the near-field spray, which has little influence of ambient air, has a great correlation with the injection rate.

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (2) Comparison of Spray Uniformity and Atomization Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (2) 분무 균일도 및 미립화 특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.154-161
    • /
    • 2020
  • A single spray plume is the basic unit of the entire spray plume and is an important factor in understanding the spray characteristics. However, since the multi-hole GDI injector has a narrow spray angle, the superposition of the spray plumes occurs severely. Therefore, the spray uniformity and the spray atomization characteristics of a single spray plume were analyzed in this study using a single-hole GDI injector. Five single-hole GDI injectors with different nozzle hole diameters were used in the experiment. The uniformity of the spray was evaluated through the analysis of the spray pattern images. In addition, the atomization characteristics were compared using the diameter distribution of the spray droplets obtained using PDPA. As a result, the larger diameter of the nozzle hole, the less uniformity of the spray, and the injection pressure did not have a significant effect on the spray uniformity. It is judged that the surface roughness of the injector has a greater effect on spray uniformity than the diameter of the nozzle hole. Also, the size of the spray droplets increased sharply when the diameter of the nozzle hole was 230 ㎛.

Experimental and Numerical Analysis of DME Spray Characteristics in Common-rail Fuel System (커먼레일 연료시스템에서의 DME 분무 특성에 대한 실험과 해석적 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Lee, Sang-In;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1151-1159
    • /
    • 2012
  • Spray visualization and computer simulation of a DME injector have been conducted to investigate the enlarged injection hole diameter effect. To increase the reliability of the computational result, simulation results have been compared with the visualization test results, and the behaviors of a DME spray under various high-pressure and -temperature conditions have been computed. This study shows a discrepancy of 3.57% between the experimental and the computational results of penetration length for an injection pressure of 35 MPa and ambient pressure of 5 MPa. When simulating the engine conditions, the maximum penetration length of a fully developed DME spray is 42 mm when the temperature to pressure ratio is 300 K/MPa. The DME spray behavior is dominantly affected by the ambient pressure under the condition that the ratio is less than 300 K/MPa, and by the ambient temperature under the condition that the ratio is more than 300 K/MPa.