• Title/Summary/Keyword: 인장 좌굴

Search Result 85, Processing Time 0.023 seconds

Papers : Component Design of a composite Aircraft Fuselage (논문 : 복합재료 항공기 동체 부품 설계)

  • Kim,Seong-Yeol;Lee,Su-Yong;Park,Jeong-Seon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.65-74
    • /
    • 2002
  • Composite materials are used for main structural components of aircraft fuselage such as skin, stringer and frame to reduce weight. Failure and buckling analysis of the composite fuselage components have been done for structural design. The loads of MD90-30 are applied to each component. Various shapes of section such as I, Z and T-type are chosen as candidate composite stringer and frame. The analysis results of composite fuselage components are compared according to ply-angle and ply-number, and the section type. The numerical results shows that ply-angle and ply-number have important effects on failure caused by axial load for the frame are important design parameters of composite fuselage components. This study suggests several design tips for composite fuselage components.

Analysis for Nonlinear Behavior of Concrete Panel Considering Steel Bar Buckling (철근 좌굴을 고려한 콘크리트 패널의 비선형 거동에 대한 해석)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.130-137
    • /
    • 2018
  • Many constitutive models for concrete have been developed to predict the nonlinear behavior of concrete members considerably. The constitutive model for reinforcing bar that include the tension stiffening effect due to the bond characteristics between steel bars and concrete is being studied but the bilinear model is generally used. It was found that the buckling of the longitudinal reinforcing bars is controlled the nonlinear behavior of hybrid precast concrete panel, which is being developed for core wall. In this study, the constitutive models that can consider the embedding and buckling effects of reinforcing bar are investigated and a new model combing these constitutive models is proposed. In order to verify the proposed model, the analysis results are compared with experimental results of the concrete wall and hybrid precast concrete panel. The analysis of embedding-effect-only modeling predicted that the deformation increases continually without the decrease in the load carrying capacity. However, the analysis results of proposed model showed good agreement with some experimental results, thus verifying the proposed computational model.

Tensile Failure and Buckling Load Improvement of Composite Plates With A Central Hole (원공이 있는 복합재료 평판의 인장파단 및 좌굴 하중 개선)

  • 이호형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.242-245
    • /
    • 1999
  • In aerospace industry improvement of structural performance of flight structure without increasing weight has great advantage. In this study, an innovative design method to increase the buckling load and tension failure load at the same time without increasing the weight was investigated by using the curvilinear fiber format in composite plates with central hole. It was investigated how much gain can be obtained with curvilinear fiber format for the plates with different hole size and different stacking sequence.

  • PDF

A Study on the Compliance of a Compact Tension Test Specimen (소형인장시험편의 컴플라이언스에 관한 고찰)

  • Jeong, Gi-Hyeon;Seok, Chang-Seong;Yang, Won-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3010-3017
    • /
    • 2000
  • For integrity evaluation of cracked or damaged structures, fracture toughness test results in ASTM are widely used. The fracture toughness values of the structures are used as an effective design criterion in nuclear plants and aircraft structures. Sometimes the difference of P-$\delta$ curve trend during the unloading /reloading cycle in the fracture toughness test using partial unloading compliance was observed. The phenomenon as a possible source of error in determining fracture toughness may be caused by the residual stress during unloading work-hardening and bucking of a specimen. Therefore, we evaluate the effect of bucking and compressive residual stress during the K-R and J-R testing using a finite element method.

Ultimate Behavior of Plate Girders with High Strength Steel in Combined Bending and Shear (휨과 전단을 받는 고강도강 플레이트거더의 극한거동)

  • Kim, Jong-Min;Hwang, Min-Oh;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • 국내에서는 플레이트거더의 휨 강도 및 전단 강도를 허용응력설계법에 기반한 도로교설계기준(2005)에 근거하여 규정하고 있으며, 국외의 경우 하중저항계수설계법에 근간을 둔 AISC(2005) 등의 규정을 통해 산정하고 있다. 최근에는 인장강도 800MPa 급의 강재가 생산되고 있으나 국내 설계기준에서는 아직까지 상기 인장강도를 갖는 고강도강에 대한 설계기준은 마련되지 않고 있다. 본 연구에서는 휨과 전단이 동시에 작용하는 고강도강 적용 플레이트거더의 극한거동 해석을 통해 국내기준의 적용성을 판단하고, 국외기준인 AISC(2005)와 비교하여 나타내어 허용응력설계법에 근거한 국내기준의 강도산정법의 한계점에 대해 고찰하였다.

  • PDF

A Study on Vibration Characteristics and Buckling of a Cracked Plate by Laser Holography Method (레이저 홀로그래피법에 의한 균열박판의 좌굴 및 진동특성에 관한 연구)

  • ;;;;藤本孝
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.411-418
    • /
    • 1992
  • 본 연구에서는 인장하중을 받는 균열이 없는 박판 시험편과 45˚경사균열시험 편의 고유진동수 측정을 위하여 레이저 홀로그래피법을 이용하여 진동모드 측정을 하 여 그 결과를 비교분석하는 실험방법을 택하였으며, 균열이 없는 박판에 대해서만 무 차원하중의 증가에 따른 고유 진동수의 변화관계를 실험치와 Ritz Method에 의한 유한 요소 해석치와 비교하였다.

Design and Verification of Shear Buckling Test Fixture for Composite Laminate (복합재 적층판의 전단좌굴시험을 위한 치구 설계 및 검증)

  • Park, Sung-Jun;Ko, Myung-Gyun;Kim, Dong-Gwan;Kim, Sang-Kuk;Moon, Chang-Oh;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.158-167
    • /
    • 2014
  • Final goal of this research is to establish the database for correlation factors which connects the test and analysis results of shear buckling allowables for composite plate. To accomplish the goal, extensive test and analysis works are required. In this paper, as the first step, a frame-type fixture for shear buckling test was designed and validated through the test and analysis. Final configuration of the fixture were determined via parametric study on the effect of specimen size, cross-sectional dimensions, and number of fastening bolts on the shear buckling load. Results of the study showed the designed frame-type fixture successfully induces the shear buckling of composite plate. However, there were deviations between the test results and analysis results for ideal case under pure shear load, which were mainly caused by the difference in plate sizes for both cases. The difference were larger in the plates with larger hole and simply supported boundary condition. It is concluded from the results that while the designed fixture can be used for the clamped plates with acceptable accuracy, it shows larger difference in the simply supported plates.

Optimization of Cable Stayed Bridges Considering Initial Cable Tension and Tower Coordinates (사장교의 초기인장력과 주탑좌표를 고려한 최적설계)

  • Kim, Kyung Seung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.205-213
    • /
    • 1988
  • It is not a simple task to optimize a cable stayed bridge, because it involves, in addition to the section properties, number and arrangement of cables, initial tension forces of cables, and type and height of the tower as design variables. This study deals with an optimization problem of cable stayed bridges considering initial cable forces, section properties of the girder and the tower, and coordinates of the tower. In order to avoid difficulties in dealing with numerous variables which interact mutually, separate design spaces are adopted for initial cable forces, section properties, and coordinates, respectively. Strain energy stored in the structure is used as the object function in the design of the initial cable forces, while weight of the structure is used in the design of section and coordinates. Upper and lower limits of the initial forces, allowable stresses including the effect of buckling, and lower limit of the sectional area are considered as constraints. The proposed method is applied to a fan type bridge and a harp type bridge. It is believed through comparison of the results to the previous results in the literature that the proposed method renders rational design values. It is also shown that the coordinate optimization, which is usually deleted in the optimization process, results in additional saving of materials.

  • PDF

The Structural Behavior of Strong Axis Connections by Type of Weak Axis Connection - In Case of Loading Gravity Load - (약축 접합부 형식에 따른 강축 접합부의 구조적 거동 - 연직하중이 작용하는 경우 -)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.275-284
    • /
    • 2004
  • The behavior of the connection for beam-to-column weak axis connection and its details should be identified. Thus, each element is considered a panel zone, and the horizontal stiffener's presence or absence and position in bracket-type welding connection are used as variables to compare the behavior of strong axis connection and weak axis connection. In this study, the strength of connection is calculated by substituting the simple beam-strengthened vertical stiffeners for connection in the presence of horizontal stiffeners. In the absence of horizontal stiffeners, the strength of connection can be calculated using local flange bending strength considering local web yielding strength, web crippling, and web buckling strength. The results of the theoretical analysis and experiments are compared.

Local Buckling and Inelastic Behaviour of 800 MPa High-Strength Steel Beams (800MPa급 고강도강 보 부재의 국부좌굴 및 비탄성 거동)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Kim, Dae-Kyung;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.479-490
    • /
    • 2012
  • Flexural tests on full-scale H-shaped beams, built up from high-strength steels (HSB800 and HSA800) with a nominal tensile strength of 800 MPa, was carried out to study the effect of flange slenderness of high-strength steel on flexural strength and rotation capacity. The primary objective was to investigate the appropriateness of extrapolating current stability criteria (originally developed for ordinary steel) to high-strength steel. The performance of high-strength steel specimens was very satisfactory from the strength, but not from the rotation capacity, perspective. The inferior rotation capacity of high-strength steel beams was shown to be directly attributable to the absence of a distinct yield plateau and the high yield ratio of the material. Residual stress measurements reconfirmed that the magnitude of the residual stress is almost independent of the yield stress of the base metal.