• Title/Summary/Keyword: 인장 변형성능

Search Result 232, Processing Time 0.023 seconds

Performance Evaluation of a Connection Joint using a High-Ductility Concrete (고인성 콘크리트를 사용한 연결조인트의 성능평가)

  • Kim, Byeong-Ki;Kim, Jae Hwan;Yang, Il-Seung;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.185-192
    • /
    • 2015
  • Expansion joint is the essential element of the bridge in many cases. When the bridge faces chloride of preventing freezing on the surface of the bridge, the expansion joints is damaged significantly, thus this reduces service life and increases maintenance cost of the bridge. As a solution of this problem, new technology using high ductile materials for the joint without expansion joint was developed and in this research, crack control performance, preventing leaking after the cracking, and chloride resistance were experimentally evaluated. As a result of the experiment, with PCM and FRC materials, the connecting joint suffered poor crack dispersion and severe damage by the chloride penetration while with high-ductile material, the connecting joint dispersed the tensile deformation to microcracks stably up to 7.5mm. Furthermore, under the sever conditions, the leaking was prevented and penetration of chloride ions was prevented after the crack occurred.

Development of Prefabricated Slab Panel for Asphalt Concrete Track (아스팔트 콘크리트 궤도용 사전제작형 슬래브 패널 개발)

  • Baek, In-Hyuk;Lee, Seong-Hyeok;Shin, Eung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.75-82
    • /
    • 2019
  • Slab panels are very important to develop asphalt concrete (AC) track for minimizing the roadbed stress due to the train load and reducing the plastic deformation of infrared-sensitive AC. In this study, the slab panel for AC track was developed through the shape design and the indoor performance test and its structural integrity has been investigated through the finite element analysis under the flexural tensile stress and the design moment according to various static load combination by KRL-2012 standard train load model and KR-C code. In order to verify the suitability of the slab panel for AC track, static bending strength test and dynamic bending strength test were performed according to EN 13230-2. Results show that the slab panel for AC track satisfies all the performance standards required by European standards such as crack loads and crack extension.

$BaSO_4$ 첨가량에 따른 PET 직물 태에 미치는 영향

  • Gwon, Il-Jun;Park, Seong-Min;Kim, Myeong-Sun;Kim, Sang-Uk;Park, Ji-Yeon;Jang, Yeong-Il;Yeom, Jeong-Hyeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.102-102
    • /
    • 2011
  • 레이온 섬유는 dry한 촉감, 고광택, 드레이프성 등 의류 분야에서 요구하는 많은 장점들을 가지고 있으나 타 섬유 소재에 비해 소비량이 적은 것은 합섬이나 면/울 제품에 비해 상대적으로 제품 가격이 높고, 형태안정성이 취약하여 정장 및 캐주얼의 겉감 용도로 쓰기에는 성능 보완이 필요하다. 또한 염색가공 공정에서 구김발생이 많으며, 열고정이 쉽게 이루어지지 않아 습윤강도와 탄성 회복률이 낮아 변형이 쉽게 발생된다. 이에 본 연구에서는 합섬의 장점을 그대로 유지하면서 레이온 섬유가 갖는 고비중과 우수한 드레이프성과 유연한 질감으로 소프트 터치를 발현하는 특수한 레이온 대체 소재를 실현하고자 하였다. 직물에서 드레이프성과 은은한 광택을 확보하기 위해서는 폴리머단계에서 비중과 광택을 발현할 수 있는 무기입자 중 비중이 높고, 중합 후 폴리머 내에서 광택을 유지하는 입자의 선택이 필요한데 본 실험에서는 $BaSO_4$를 이용하여 PET dope액과 중합한 후 용융 방사하여 고비중 폴리에스테르사(100/48)를 제조하였다. 고비중 폴리에스테르사를 이용하여 폭 58inch, 밀도 92T, 중량 324.8g/yd 직물로 제직하여 그에 따른 태를 측정하였다. 태측정기(KES-FB, KATO TECH CO)를 이용하여 인장 & 전단강도, 굽힘강도, 압축강도, 표면측정 시험 결과 $BaSO_4$ 2% 첨가한 원단의 드레이프성이 우수한 것을 확인할 수 있었다.

  • PDF

Structural Robust Design of PEMFC Gasket Using Taguchi Method (다구찌 방법을 이용한 고분자 전해질 연료전지 가스켓의 강건 구조 설계)

  • Yoon, Jin-Young;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.740-746
    • /
    • 2008
  • In this paper, robust structural design of the PEMFC stack gasket is pursued with Taguchi method by considering the noise factor in stack assembly. The study of noise problem in stacking is required to secure the safety and performance improvement of PEMFC stack. The design parameters in the Taguchi method are selected so that the structural responses are insensitive to the noise factors. In the gasket analysis, a Mooney-Rivlin strain energy function is used to consider hyperelasticity between load and displacement. By uni-axial and equi-biaxial tension tests of the gasket, the material properties are determined for the use in robust design of PEMFC gasket. The robust design of the PEMFC stack may provide structural reliability.

Nonlinear Finite Element Analysis of Reinforced Concrete Planar Members Using Rotating Orthotropic Axes Model (이방향성 회전 직교축 모델을 이용한 철근콘크리트 면부재의 비선형 유한요소해석)

  • 박홍근
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.117-127
    • /
    • 1995
  • The objective of this research is to investigate the effectiveness of rotating orthotropic axes model in analyzing reinforced concrete planar members under cyclic as well as monotonic loading. The structural members to be addressed are moderately reinforced beams, columns, beam-column joints, and shear walls, whose failure occurs due to compressive crushing after extensive crack propagation, The rotating orthotropic axes model which is usually used for monotonic loading is developed for cyclic loading. With the existing cyclic material models of reinforcing steel and bond-slip, this material model is used for the finite element analysis. For monotonic loading, the analytical results of the rotating orthotropic axes model are compared with reinforced concrete beams which have brittle failure. For Shear wall members under cyclic loading, the analyses are compared with the experiments for the ultimate load capacity, nonlinear deformation, and pinching effect due to crack opening and closing.

  • PDF

A Study on Estimation of the Pavement fatigue Life by Loading (하중작용(荷重作用)에 의한 포장수명(鋪裝壽命)에 관한 연구(硏究))

  • Nam, Young Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.83-92
    • /
    • 1989
  • For many of the rigid pavements the observations of significantly different performances were explained to relate distress mechanisms to distress manifestation and to develope better prediction of performance. This paper summarizes the result of an investigation of the resilient elastic and fatigue behavior of inservice cement concrete pavements. Static indirect tensile tests were. conducted in order to estimate the average tensile strength of each of the projects Repeat-load indirect tensile tests were conducted to determine the fatigue and resilient elastic characteristics and the relationship between fatigue life and stress/strength ratio. Deformation measurements were taken during fatigue testing in order to determine the resilient elastic properties of the material and the changes in these properties during the test period.

  • PDF

Failure detection of composite structures using a fiber Bragg grating sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 파손 검출)

  • 고종인;김천곤;홍창선
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.28-33
    • /
    • 2004
  • Failure detection in a cross-ply laminated composite beam under tensile loading were performed using a fiber Bragg grating (FBG) sensor. A Passive Mach-Zehnder interferometric demodulator was proposed to enhance sensitivity and bandwidth. The proposed FBG sensor system without active device such as a phase modulator is very simple in configuration, easy to implement and enables the measurement of high-frequency vibration with low strain amplitude such as impact or failure signal. Failure signals detected by a FBG sensor had offset value corresponding to the strain shift with vibration at a maximum frequency of several hundreds of kilohertz. at the instant of transverse crack propagation in the 90 degree layer of composite beam.

Repeated Loading Test of Shear-Critical Reinforced Concrete Beams with Headed Shear Reinforcement (헤디드 바를 전단철근으로 사용한 철근콘크리트 보의 전단거동에 관한 반복하중 실험)

  • Kim, Young-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.47-56
    • /
    • 2006
  • The repeated loading responses of four shear-critical reinforced concrete beams with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}$ standard hooks, haying free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups with improved ductility, larger energy absorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

A Study on the sealing Characteristic of Automobile Waterproof Connector (자동차용 방수커넥터의 밀봉특성에 관한 연구)

  • Ko, Young-Bae;Park, Hyung-Pil;Lee, Jeong-Won;Cha, Baeg-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1859-1864
    • /
    • 2014
  • Liquid silicone rubber(LSR) has been applied to various products such as electronic devices owing to its excellent thermal and chemical resistance. Hyperelastic materials, however, have properties distinguished from general metal materials. Hyperelastic materials show elastic behaviors in the range of large deformation in which load has the nonlinear relation with deformation. In addition, they have characteristics of nonlinearity, incompressibility, in large scale. On account of such characteristics, there are many difficulties in design and production using these materials. In this study, the load-deformation relation obtained from tension and compression tests was applied to finite element analysis in order to design waterproof connectors for automobiles. Furthermore, the effectiveness of the finite element analysis was confirmed by comparing the results of analysis with those of performance tests.

Engineering Properties of HPFRCC Including Both Organic and Inoranic Fibers (유·무기 섬유를 복합사용한 HPFRCC의 공학적 특성)

  • Lee, Jong Tae;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.615-620
    • /
    • 2015
  • The high performance fiber reinforced cementitious composite (HPFRCC) controls the cracking development of the structure by inducing micro-cracking and strain hardening behavior after the initial cracking under the tensile conditions. Although, in Korea, the research about manufacturing the single-fiber reinforced cementitious composite or the mechanical properties of hardened status has been conducted, the research to apply the HPFRCC with multi-fiber is not sufficient. Hence, in this research, considering the workability and economic aspect for practical applications, the engineering properties of HPFRCC with combined long steel fiber (SL) and long organic fiber (OL) are evaluated such as workability and strength. As a result of evaluating the engineering properties of HPFRCC, the most favorable performance was obtained when the mixture contained 1.5% of combined SL and OL.