• Title/Summary/Keyword: 인장지수

Search Result 167, Processing Time 0.025 seconds

A Study on the Behaviors of Inorganic Fillers in Recycling of the Waste Agricultural Plastic Films (I) - Effects on the Addition of Calcium Carbonate and Calpet - (무기(無機) 충진재(充鎭材) 첨가(添加)에 따른 재생(再生) 폐(廢)비닐의 특성(特性) 분석(分析) (I) - 중탄과 칼펫의 첨가(添加)에 따른 영향(影響) -)

  • Ahn, Tae-Kwang;Son, Sang-Jin;Kim, Hea-Tae;Kim, Myoung-Ho;Zhou, Gong-Ming;Chen, De-Zhen
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.10-20
    • /
    • 2008
  • In order to study the behaviors of inorganic fillers in recycling of the waste agricultural plastic films, the washed PE fluffs from Shihwa and Jungeup Plant belonging to ENVICO were used respectively. First of all, the test pellets were manufactured by adding of inorganic fillers suchlike calcium carbonate and calpet by certain portions to PE fluffs and then the tested sheets were formed. The mechanical and thermal properties of the samples were measured and compared with others. The items measured were tensile, flexural, Izod impact, HDT, MFT, and so on. Morphologies were also investigated for various samples using the SEM. Finally, optimum ratios between recycled PE and inorganic additives were found out for the best products in physical condition as well as in economic point of view.

Preparation and characterization of isosorbide based PET/polycarbonate blends (Isosorbide가 함유된 바이오 기반 PET와 polycarbonate 블렌드의 제조 및 특성 연구)

  • Park, Ji-Soo;Nam, Byeong-Uk;Park, Jun-Seo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1216-1221
    • /
    • 2014
  • Poly(ethylene-co-isosorbide terephthalate) (PEIT) is interest in polymer which has isosorbide monomer that is renewable resources such as corn. However, there is important drawback which is low mechnical properties as increasing isosorbide contents. In this study, polycarbonate used to make up for drawback of mechanical properties of PEIT. In addition, PEIT used to improve the tensile elongation of polycarbonate because PEIT has good sheet proccessability. The effect of polycarbonate on morphology, thermal and mechanical properties were investigated using FE-SEM, DMA, TGA, UTM, and notched izod impact strength tester. As a result of this study, PEIT/PC blends were in compatible system and polycarbonate can act as an improvement of thermal stability and mechanical properties in the blends.

Determination of Rock Abrasiveness using Cerchar Abrasiveness Test (세르샤 마모시험을 통한 암석의 마모도 측정에 관한 연구)

  • Lee, Su-Deuk;Jung, Ho-Young;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.284-295
    • /
    • 2012
  • Abrasiveness of rock plays an important role on the wear of rock cutting tools. In this study, Cerchar abrasiveness tests were carried out to assess the abrasiveness of 19 different Korean rocks. Cerchar abrasiveness test is widely used to assess the abrasiveness of rock because of its simplicity and inexpensive cost. This study examines the relationship between Cerchar Abrasiveness Index (CAI) and mechanical properties (uniaxial compressive strength, Brazilian tensile strength, Young's modulus, Poisson's ratio, porosity, shore hardness of rock), and the effect of quartz content, equivalent quartz content, which was obtained from XRD analysis. As a result of test, CAI was more influenced by petrographical properties than by the bonding strength of the matrix material of rock. CAI prediction model which consisted of UCS and EQC was proposed. CAI decreased linearly with the hardness of the steel pin. Numerical analysis was performed using Autodyn-3D for simulating the Cerchar abrasiveness test. In the simulations, most of pin wear occurred during the initial scratching distance, and CAI increased with the increase of normal loading.

An Experimental Study on the Durability and Load Carrying Capacity of RC Structure Repair System Using FR-ECC (고인성 내화보수모르터(FR-ECC)를 활용한 RC 구조물 보수공법의 내구성능 및 내하력에 관한 실험적 연구)

  • Kim, Jeong Hee;Lim, Seung Chan;Kim, Jae Hwan;Kwon, Yung Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.75-86
    • /
    • 2012
  • This paper presents some research results on the shrinkage characteristics and frost resistance before and after cracking of FR-ECC(Fire Resistance-Engineered Cementitious Composite). Also, a waterstop performance and exfoliating resistance of multi-layer lining specimens using FR-ECC and flexural performance of beam member by repaired FR-ECC are estimated in this paper. Experimental results indicate that the plastic shrinkage crack and length change ratio of FR-ECC have been reduced as compared with that of the existing repair mortar, and that its crack resistance on the dry shrinkage is improved under the confining stress. As well as FR-ECC has been great in the frost resistance and its tensile properties under the cracked state have been not reduced by freezing and thawing reaction. In addition, beam member by repaired FR-ECC have been increased in the flexural properties such as initial crack moment, yeild moment, and its crack width has been controled in a stable by the frexural failure.

Styrene-free Synthesis of Flame-retardant Vinyl Ester Resin Films for Hot-melt Prepreg Process (핫멜트 프리프레그 공정용 난연성 비닐에스터 수지 필름의 무 스티렌 합성)

  • Jiseon, Kang;Minji, Kim;Mongyoung, Huh;Seok Il, Yun
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.412-418
    • /
    • 2022
  • Flame-retardant vinyl ester (VE) resin films were developed from the mixtures of brominated and non-brominated epoxy resins via esterification with methacrylic acid without reactive diluents. The films were used to fabricate carbon fiber (CF) prepregs via a hot melt impregnation process. The viscosity of VE resins suitable for film production was optimized by mixing low-viscosity bisphenol-A and high-viscosity brominated bisphenol-A epoxy precursors. Increasing the bromine content of the cured VE resin further increased the limited oxygen index (LOI) (39%), storage modulus (2.4 GPa) at 25℃ and residual carbonization (16.1%) values compared to non-brominated VE. Manual layup of as-prepared VE prepregs with subsequent curing led to the successful fabrication of CF-reinforced composites with high tensile and flexural strength. The results from the study hold high promise for a styrene-free, environmentally friendly VE composite process in the future.

Experimental Study on the Flexural Behavior Effect of RC Beam Repaired and Strengthened by Latex Modified Concrete (라텍스개질콘크리트로 보수·보강된 RC 보의 휨 거동에 관한 실험적 연구)

  • Kim, Seong-Hwan;Yun, Kyong-Ku;Kim, Yong-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.503-510
    • /
    • 2009
  • Latex modified concrete (LMC) is a successful polymer-portland cement concretes, which have been developed and used for many years, in overlaying bridge decks and resurfacing industrial floors. The excellent bond strength to substrate, easy application and high resistance to impact, abrasion, wear, aggressive chemicals and freeze-thaw deterioration have made this material used widely. The objective of this study was to determine experimentally the load-deflection response and ultimate strength of reinforced RC beams. The cracking patterns and the mode of failure were observed. Because of excellent bond strength and repairing effects, the RC beams repaired by LMC at compression or tension zone showed over 100% recovery from damaged structures. The RC beams overlaid by LMC showed significant improvement at load carrying capacity as overlay thickness increases. However, the beams repaired of tension zone without shear stirrups almost showed no strengthen effect, and indicated an interfacial failures. The interfacial behavior was estimated by numerical method adopting the concept of shear flow.

Evaluation of Yield Surfaces of Epoxy Polymers Considering the Influence of Crosslinking Ratio: A Molecular Dynamics Study (분자동역학 해석 기반 가교율에 따른 에폭시 폴리머의 항복 표면 형상 평가)

  • Jinyoung Kim;Hyungbum Park
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.369-376
    • /
    • 2023
  • This study focuses on investigating the influence of epoxy polymer crosslinking density, a crucial aspect in composite material matrices, on the yield surface using molecular dynamics simulations. Our approach involved generating epoxy models with diverse crosslinking densities and subjecting them to both uniaxial and multiaxial deformation simulations, accounting for the elasto-plastic deformation behaviors. Through this, we obtained key mechanical parameters including elastic modulus, yield point, and strain hardening coefficient, all correlated with crosslinking conversion ratios. A particularly noteworthy finding is the rapid expansion of the yield surface in the biaxial compression region with increasing crosslinking ratios, compared to the uniaxial tensile region. This unique behavior led to observable yield surface variations, indicating a significant pressure-dependent relationship of the yield surface considering plastic strain and crosslinking conversion ratio. These results contribute to a deeper understanding of the complex interplay between crosslinking density and plastic mechanical response, especially in the aspect of multiaxial deformation behaviors.

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.

Properties of Indigenous Korean Paper(Hanji) - Classification of Oebal(single frame)Papermaking Methods - (토착한지의 특성 - 외발 초지법 분류를 중심으로 -)

  • Cheon, Cheol;Kim, Seong-Ju;Jin, Young-Mun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.88-104
    • /
    • 1999
  • This study was carried out to classify the Hanjis into three groups that were indigenous Hanji, traditional Hanji, and improved Hanji handmade by paper making method according to the physical properties of each paper sheet such as tensile, bursting and tearing strength, folding endurance and fiber orientation in each layer. The results obtained were summarized as follows: 1. The multi-layered Hanjis made by "Oebal" Hanji making method in different direction of fiber orientation have good properties in tearing resistance. 2. The multi-layered Hanji in different direction of fiber orientation has good properties in the tearing resistance, but the burst index and the breaking length results were lower than the single layered Hanjis. 3. The different fiber orientation and multi-layered method didn't increase, the three indexes(burst index, tear index, breaking length). Only, the different direction of fiber orientation decreased the difference of width and length strength (tensile, tear) of the Hanji. 4. "Dochim"(Korean finishing touch process for indigenous Hanji by fulling round sticks) greatly increase folding endurance(double folds, not $log_{10}$) and good effect to tensile strength and burst strength. 5. The today's Oebal Hanji were the maximum of 2 layers and the indigenous Oebal Hanji were 16 layers the maximum. In addition, average of the indigenous Oebal Hanji was 4 layers(all 4-layer Hanji were the different fiber orientation of each layer). 6, The indigenous Hanji(multi-layered, and different fiber orientation) was good condition with "Dochim". Dochim increased tensile strength and burst strength of the indigenous Hanji. So the three-strength indexes were similar level("--"). 7. When the number of layer which were same fiber orientation increase, the increased Hanji became similar strength pattern("V", breaking length and burst index was higher than tear index) with "Ssangbal" Hanji. 8. The single layered papers that made by "Oebal" Hanji making method were similar strength pattern with Ssangbal Hanji. 9. There was no way to find the width and length direction of multi-layered Hanji by comparison between the difference of tensile strength and the difference of tearing resistance. 10. The compared pattern of tensile strength and tearing resistance of indigenous Oebal Hanji was different from today's Oebal Hanji. Especially, the tearing resistance of all indigenous Oebal Hanji(16 samples) was stronger on width of tearing resistance. And in the half of indigenous Oebal Hanji samples, the width of tensile strength and tearing resistance was stronger than length strength (Indigenous Oebal: '$\ulcorner\lrcorner$' 50%, '$\bigcup$' 50% $\leftrightarrow$ Today's Oebal: '$\ulcorner\lrcorner$' 12%, '$\bigcup$'6%, '$\llcorner\urcorner$'17%, '$\bigcap$'65%). In 65% today's Oebal, the length direction of tensile strength and tearing resistance was stronger than the width direction.

  • PDF

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.